ﻻ يوجد ملخص باللغة العربية
The magnetic behavior of the quaternary compounds, RCr2Si2C (R = La, Ce), has been investigated by magnetization (M) and heat-capacity (C) measurements (1.8-300 K) in the bulk polycrystals and nano forms (<1 {mu}m) obtained by high-energy balling. Our finding is that Cr appears to exhibit magnetic ordering of an itinerant type at low temperatures (<20 K) in the bulk form, as inferred from a combined look at all the data. The magnetic ordering gets gradually suppressed with increasing milling time. Evidence for a mixed-valence state of Ce for the bulk form is obtained from the tendency of magnetic susceptibility to exhibit a maximum above 300 K. However, this feature vanishes in the nano form, which exhibits a Curie-Weiss behavior above 200 K as though Ce tends towards trivalency in these fine particles; in addition, there is a weak upturn in C/T below 10 K in the bulk, which becomes very prominent in the milled Ce-based specimens at lower temperatures, as though heavy-fermion behavior gets stronger in smaller particles.
We have investigated the magnetic behavior of ball-milled fine particles of well-known Kondo lattices, CeAu2Si2, CePd2Si2 and CeAl2, by magnetization and heat-capacity studies in order to understand the magnetic behavior when the particle size is red
We report temperature (T) dependence of dc magnetization, electrical resistivity (rho(T)), and heat-capacity of rare-earth (R) compounds, Gd3RuSn6 and Tb3RuSn6, which are found to crystallize in the Yb3CoSn6-type orthorhombic structure (space group:
We present electronic structure calculations for the one-dimensional magnetic chain compounds Ca_3CoRhO_6 and Ca_3FeRhO_6. The calculations are based on density functional theory and the local density approximation. We use the augmented spherical wav
The antiferromagnetic transition is investigated in the rare-earth (R) tritelluride RTe3 family of charge density wave (CDW) compounds via specific heat, magnetization and resistivity measurements. Observation of the opening of a superzone gap in the
The Ce(1-x)LaxCrGe3 (x = 0, 0.19, 0.43, 0.58 and 1) intermetallic compound system has been investigated by magnetization measurements and neutron scattering techniques to determine the effect of La-doping on the magnetic ordering and exchange interac