ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and structural properties of the intermetallic Ce(1-x)LaxCrGe3 series of compounds

134   0   0.0 ( 0 )
 نشر من قبل Jeffrey Lynn
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Ce(1-x)LaxCrGe3 (x = 0, 0.19, 0.43, 0.58 and 1) intermetallic compound system has been investigated by magnetization measurements and neutron scattering techniques to determine the effect of La-doping on the magnetic ordering and exchange interaction between Cr ions. The structural and magnetic characterization in this series was first verified by X-ray diffraction and bulk magnetization measurements. The samples exhibit the known hexagonal perovskite structure (P63/mmc space group) and have a single magnetic phase according to magnetization measurements. In this work, the ferromagnetic ordering temperature for Cr evolves smoothly from a range of 68 K to 77 K for CeCrGe3 to a range of 91 K to 96 K for LaCrGe3 as La replaces Ce. Magnetization results indicate the formation of domain walls below the transition temperature for all the Ce(1-x)LaxCrGe3 systems investigated. Neutron results indicate ordered magnetic Cr moments aligned along the c axis for the x = 1 LaCrGe3 system, as well as for x = 0.19, 0.43, and 0.58, which contrasts with the x = 0 CeCrGe3 where the moments order in the ab plane.



قيم البحث

اقرأ أيضاً

Structural, magnetization and heat capacity studies were performed on Ce$_2$(Pd$_{1-x}$Ni$_x$)$_2$Sn ($0 leq x leq 1$) alloys. The substitution of Pd atoms by isoelectronic Ni leads to a change in the crystallographic structure from tetragonal (for $ x leq 0.3$) to centered orthorhombic lattice (for $x geq 0.4$). The volume contraction thorough the series is comparable to the expected from the atomic size ratio between transition metal components. The consequent weak increase of the Kondo temperature drives the two transitions observed in Ce$_2$Pd$_2$Sn to merge at $x = 0.25$. After about a 1% of volume collapse at the structural modification, the system behaves as a weakly magnetic heavy fermion with an enhanced degenerate ground state. Notably, an incipient magnetic transition arises on the Ni-rich size. This unexpected behavior is discussed in terms of an enhancement of the density of states driven by the increase of the $4f$-conduction band hybridization and the incipient contribution of the first excited crystal field doublet on the ground state properties.
112 - V. Zlatic , R. Monnier 2005
The thermoelectric properties of intermetallic compounds with Ce or Yb ions are explained by the single-impurity Anderson model which takes into account the crystal-field splitting of the 4{it f} ground-state multiplet, and assumes a strong Coulomb r epulsion which restricts the number of {it f} electrons or {it f} holes to $n_fleq 1$ for Ce and $n_f^{hole}leq 1$ for Yb ions. Using the non-crossing approximation and imposing the charge neutrality constraint on the local scattering problem at each temperature and pressure, the excitation spectrum and the transport coefficients of the model are obtained. The thermopower calculated in such a way exhibits all the characteristic features observed in Ce and Yb intermetallics. Calculating the effect of pressure on various characteristic energy scales of the model, we obtain the $(T,p)$ phase diagram which agrees with the experimental data on CeRu$_{2}$Si$_2$, CeCu$_{2}$Si$_2$, CePd$_{2}$Si$_2$, and similar compounds. The evolution of the thermopower and the electrical resistance as a function of temperature, pressure or doping is explained in terms of the crossovers between various fixed points of the model and the redistribution of the single-particle spectral weight within the Fermi window.
112 - Y. J. Zhang , B. Shen , F. Du 2020
We report a study of the structural and magnetic properties of single crystals of Ce$_2$IrGa$_{12}$. Ce$_2$IrGa$_{12}$ crystallizes in a layered tetragonal structure, and undergoes an antiferromagnetic transition below 3.1 K. We characterize the temp erature-field phase diagrams of Ce$_2$IrGa$_{12}$ for fields both within the $ab$-plane and along the $c$-axis, where the presence of a field-induced magnetic phase is found for in-plane fields. The ordering temperature is moderately enhanced upon the application of pressures up to 2.3~GPa, suggesting that Ce$_2$IrGa$_{12}$ corresponds to the well localized region of the Doniach phase diagram.
The role of slight changes of the chemical composition on antiferromagnetic ordering of Cr in rare-earth orthochoromites was investigated on a series of ceramic solid-solutions Ce$_{1-x}$Eu${_x}$O$_3$ where x varied from 0 to 1. Gradual replacement o f Ce with Eu reduces the cell volume and acts equivalently to applying external pressure. Full replacement of Ce by Eu, on the other hand, reduces the N{e}el temperature from 260 K for CeCrO$_3$ to 178 K for EuCrO$_3$ as established by magnetization, heat capacity and neutron powder diffraction measurements. High resolution x-ray powder diffraction measurements on Ce$_{1-x}$Eu${_x}$O$_3$ and neutron powder diffraction studies on CeCrO$_3$ enable to correlate the magnetic properties of the Cr magnetic subsystem with the size of the lattice and minute changes of the bonding and torsion angles within and between the CrO$_6$ octahedra. We find that the sizes and the shapes of the CrO$6$ octahedra remain essentially unchanged as the size of the rare-earth cations is reduced whereas decreasing Cr - O - Cr bonding angles and increasing inclination of neighboring octahedra enable to compensate for the decreasing lattice size.
149 - V. O. Garlea , R. Jin , E. Garlea 2012
We report the structural and magnetic properties of a new class of cobaltates with the chemical formula (BaSr)4-xLa2xCo4O15 (x = 0, 0.5 and 1). These compounds crystallize in a hexagonal structure in which cobalt ions are distributed among two distin ct crystallographic sites with different oxygen coordination. Three Co-O tetrahedra and one octahedron are linked by shared oxygen atoms to form Co4O15 clusters, which are packed together into a honeycomb-like network. Partial substitution of Sr and/or Ba atoms by La allows one to adjust the degree of Co valence mixing, but all compositions remain subject to a random distribution of charge. Magnetic susceptibility together with neutron scattering measurements reveal that all studied specimens are characterized by competing ferro- and antiferro-magnetic exchange interactions that give rise to a three dimensional Heisenberg spin-glass state. Neutron spectroscopy shows a clear trend of slowing down of spin-dynamics upon increasing La concentration, suggesting a reduction in charge randomness in the doped samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا