ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Classification of Type II Codes of Length 24

150   0   0.0 ( 0 )
 نشر من قبل Scott Kominers
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a new, purely coding-theoretic proof of Kochs criterion on the tetrad systems of Type II codes of length 24 using the theory of harmonic weight enumerators. This approach is inspired by Venkovs approach to the classification of the root systems of Type II lattices in R^{24}, and gives a new instance of the analogy between lattices and codes.



قيم البحث

اقرأ أيضاً

We prove configuration results for extremal Type II codes, analogous to the configuration results of Ozeki and of the second author for extremal Type II lattices. Specifically, we show that for $n in {8, 24, 32, 48, 56, 72, 96}$ every extremal Type I I code of length $n$ is generated by its codewords of minimal weight. Where Ozeki and Kominers used spherical harmonics and weighted theta functions, we use discrete harmonic polynomials and harmonic weight enumerators. Along we way we introduce $tfrac12$-designs as a discrete analog of Venkovs spherical designs of the same name.
The determination of the weight distribution of linear codes has been a fascinating problem since the very beginning of coding theory. There has been a lot of research on weight enumerators of special cases, such as self-dual codes and codes with sma ll Singletons defect. We propose a new set of linear relations that must be satisfied by the coefficients of the weight distribution. From these relations we are able to derive known identities (in an easier way) for interesting cases, such as extremal codes, Hermitian codes, MDS and NMDS codes. Moreover, we are able to present for the first time the weight distribution of AMDS codes. We also discuss the link between our results and the Pless equations.
We give a new structural development of harmonic polynomials on Hamming space, and harmonic weight enumerators of binary linear codes, that parallels one approach to harmonic polynomials on Euclidean space and weighted theta functions of Euclidean la ttices. Namely, we use the finite-dimensional representation theory of sl_2 to derive a decomposition theorem for the spaces of discrete homogeneous polynomials in terms of the spaces of discrete harmonic polynomials, and prove a generalized MacWilliams identity for harmonic weight enumerators. We then present several applications of harmonic weight enumerators, corresponding to some uses of weighted theta functions: an equivalent characterization of t-designs, the Assmus-Mattson Theorem in the case of extremal Type II codes, and configuration results for extremal Type II codes of lengths 8, 24, 32, 48, 56, 72, and 96.
We introduce the concept of spread of a code, and we specialize it to the case of maximum weight spectrum (MWS) codes. We classify two newly-defined sub-families of MWS codes according to their weight distributions, and completely describe their fund amental parameters. We focus on one of these families, the strictly compact MWS codes, proving their optimality as MWS codes and linking them to known codes.
109 - Tor Helleseth , Daniel J. Katz , 2020
A new method is used to resolve a long-standing conjecture of Niho concerning the crosscorrelation spectrum of a pair of maximum length linear recursive sequences of length $2^{2 m}-1$ with relative decimation $d=2^{m+2}-3$, where $m$ is even. The re sult indicates that there are at most five distinct crosscorrelation values. Equivalently, the result indicates that there are at most five distinct values in the Walsh spectrum of the power permutation $f(x)=x^d$ over a finite field of order $2^{2 m}$ and at most five distinct nonzero weights in the cyclic code of length $2^{2 m}-1$ with two primitive nonzeros $alpha$ and $alpha^d$. The method used to obtain this result proves constraints on the number of roots that certain seventh degree polynomials can have on the unit circle of a finite field. The method also works when $m$ is odd, in which case the associated crosscorrelation and Walsh spectra have at most six distinct values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا