ﻻ يوجد ملخص باللغة العربية
The supernova remnant Cassiopeia A contains the youngest known neutron star which is also the first one for which real time cooling has ever been observed. In order to explain the rapid cooling of this neutron star, we first present the fundamental properties of neutron stars that control their thermal evolution with emphasis on the neutrino emission processes and neutron/proton superfluidity/superconductivity. Equipped with these results, we present a scenario in which the observed cooling of the neutron star in Cassiopeia A is interpreted as being due to the recent onset of neutron superfluidity in the core of the star. The manner in which the earlier occurrence of proton superconductivity determines the observed rapidity of this neutron stars cooling is highlighted. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars.
The study of how neutron stars cool over time can provide invaluable insights into fundamental physics such as the nuclear equation of state and superconductivity and superfluidity. A critical relation in neutron star cooling is the one between obser
Pulsars are rotating neutron stars that are renowned for their timing precision, although glitches can interrupt the regular timing behavior when these stars are young. Glitches are thought to be caused by interactions between normal and superfluid m
The enigmatic X-ray emission from the bright optical star, $gamma$ Cassiopeia, is a long-standing problem. $gamma$ Cas is known to be a binary system consisting of a Be-type star and a low-mass ($Msim 1,M_odot$) companion of unknown nature orbiting i
The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of how these catastrophic explosions proceed remain uncertain due, in part, to limited observational constraints on various
The X-ray spectra of the neutron stars located in the centers of supernova remnants Cas A and HESS J1731-347 are well fit with carbon atmosphere models. These fits yield plausible neutron star sizes for the known or estimated distances to these super