ترغب بنشر مسار تعليمي؟ اضغط هنا

The Bubble-like Interior of the Core-Collapse Supernova Remnant Cassiopeia A

162   0   0.0 ( 0 )
 نشر من قبل Dan Milisavljevic
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of how these catastrophic explosions proceed remain uncertain due, in part, to limited observational constraints on various processes that can introduce asymmetries deep inside the star. Here we present near-infrared observations of the young Milky Way supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimensional map of its interior, unshocked ejecta. The remnants interior has a bubble-like morphology that smoothly connects to and helps explain the multi-ringed structures seen in the remnants bright reverse shocked main shell of expanding debris. This internal structure may have originated from turbulent mixing processes that encouraged the development of outwardly expanding plumes of radioactive 56Ni-rich ejecta. If this is true, substantial amounts of its decay product, 56Fe, may still reside in these interior cavities.



قيم البحث

اقرأ أيضاً

Massive stars can shed material via steady, line-driven winds, eruptive outflows, or mass-transfer onto a binary companion. In the case of single stars, the mass is deposited by the stellar wind into the nearby environment. After the massive star exp lodes, the stellar ejecta interact with this circumstellar material (CSM), often-times resulting in bright X-ray line emission from both the shock-heated CSM and ejecta. The amount of material lost by the progenitor, the mass of ejecta, and its energetics all impact the bulk spectral characteristics of this X-ray emission. Here we present a grid of core-collapse supernova remnant models derived from models for massive stars with zero age main sequence masses of $sim$ 10 - 30 M$_odot$ evolved from the pre-main sequence stage with wind-driven mass-loss. Evolution is handled by a multi-stage pipeline of software packages. First, we use mesa (Modules for Experiments in Stellar Astrophysics) to evolve the progenitors from pre-main sequence to iron core collapse. We then use the Supernova Explosion Code (snec) to explode the mesa models, and follow them for the first 100 days following core-collapse. Finally, we couple the snec output, along with the CSM generated from mesa mass-loss rates, into the Cosmic-Ray Hydrodynamics code (ChN) to model the remnant phase to 7000 years post core-collapse. At the end of each stage, we compare our outputs with those found in the literature, and we examine any qualitative and quantitative differences in the bulk properties of the remnants and their spectra based on the initial progenitor mass, as well as mass-loss history.
107 - Gregory S. Vance 2020
Mixing above the proto-neutron star is believed to play an important role in the supernova engine, and this mixing results in a supernova explosion with asymmetries. Elements produced in the innermost ejecta, e.g., ${}^{56}$Ni and ${}^{44}$Ti, provid e a clean probe of this engine. The production of ${}^{44}$Ti is particularly sensitive to the exact production pathway and, by understanding the available pathways, we can use ${}^{44}$Ti to probe the supernova engine. Using thermodynamic trajectories from a three-dimensional supernova explosion model, we review the production of these elements and the structures expected to form under the convective-engine paradigm behind supernovae. We compare our results to recent X-ray and $gamma$-ray observations of the Cassiopeia A supernova remnant.
An important result in core-collapse supernova (CCSN) theory is that spherically-symmetric, one-dimensional simulations routinely fail to explode, yet multi-dimensional simulations often explode. Numerical investigations suggest that turbulence eases the condition for explosion, but how is not fully understood. We develop a turbulence model for neutrino-driven convection, and show that this turbulence model reduces the condition for explosions by about 30%, in concordance with multi-dimensional simulations. In addition, we identify which turbulent terms enable explosions. Contrary to prior suggestions, turbulent ram pressure is not the dominant factor in reducing the condition for explosion. Instead, there are many contributing factors, ram pressure being only one of them, but the dominant factor is turbulent dissipation (TD). Primarily, TD provides extra heating, adding significant thermal pressure, and reducing the condition for explosion. The source of this TD power is turbulent kinetic energy, which ultimately derives its energy from the higher potential of an unstable convective profile. Investigating a turbulence model in conjunction with an explosion condition enables insight that is difficult to glean from merely analyzing complex multi-dimensional simulations. An explosion condition presents a clear diagnostic to explain why stars explode, and the turbulence model allows us to explore how turbulence enables explosion. Though we find that turbulent dissipation is a significant contributor to successful supernova explosions, it is important to note that this work is to some extent qualitative. Therefore, we suggest ways to further verify and validate our predictions with multi-dimensional simulations.
We report on the results from the analysis of our 114 ks Chandra HETGS observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the 3D structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of -2300 <~ v_r <~ 1400 km s^-1. The distribution of ejecta knots in velocity vs. projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ~90 (corresponding to ~3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ~4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 10^51 erg, we estimate the total ejecta mass to be <~ 8 M_sun, and we propose an upper limit of <~ 35 M_sun on the progenitors mass.
We report the likely detection of near-infrared 2.29 $mu$m first overtone Carbon Monoxide (CO) emission from the young supernova remnant Cassiopeia A (Cas A). The continuum-subtracted CO filter map reveals CO knots within the ejecta-rich reverse shoc k. We compare the first overtone CO emission with that found in the well-studied supernova, SN 1987A and find $sim$30 times less CO in Cas A. The presence of CO suggests that molecule mixing is small in the SN ejecta and that astrochemical processes and molecule formation may continue at least ~300 years after the initial explosion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا