ترغب بنشر مسار تعليمي؟ اضغط هنا

Pinning down the superfluid and nuclear equation of state and measuring neutron star mass using pulsar glitches

72   0   0.0 ( 0 )
 نشر من قبل Wynn C. G. Ho
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulsars are rotating neutron stars that are renowned for their timing precision, although glitches can interrupt the regular timing behavior when these stars are young. Glitches are thought to be caused by interactions between normal and superfluid matter in the star. We update our recent work on a new technique using pulsar glitch data to constrain superfluid and nuclear equation of state models, demonstrating how current and future astronomy telescopes can probe fundamental physics such as superfluidity near nuclear saturation and matter at supranuclear densities. Unlike traditional methods of measuring a stars mass by its gravitational effect on another object, our technique relies on nuclear physics knowledge and therefore allows measurement of the mass of pulsars which are in isolation.



قيم البحث

اقرأ أيضاً

Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of th e star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and X-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.
Giant pulsar frequency glitches as detected in the emblematic Vela pulsar have long been thought to be the manifestation of a neutron superfluid permeating the inner crust of a neutron star. However, this superfluid has been recently found to be entr ained by the crust, and as a consequence it does not carry enough angular momentum to explain giant glitches. The extent to which pulsar-timing observations can be reconciled with the standard vortex-mediated glitch theory is studied considering the current uncertainties on dense-matter properties. To this end, the crustal moment of inertia of glitching pulsars is calculated employing a series of different unified dense-matter equations of state.
142 - Dany Page 2011
The supernova remnant Cassiopeia A contains the youngest known neutron star which is also the first one for which real time cooling has ever been observed. In order to explain the rapid cooling of this neutron star, we first present the fundamental p roperties of neutron stars that control their thermal evolution with emphasis on the neutrino emission processes and neutron/proton superfluidity/superconductivity. Equipped with these results, we present a scenario in which the observed cooling of the neutron star in Cassiopeia A is interpreted as being due to the recent onset of neutron superfluidity in the core of the star. The manner in which the earlier occurrence of proton superconductivity determines the observed rapidity of this neutron stars cooling is highlighted. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars.
In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here we study the additional impact on the EOS from the jointly estimated mass and radius of PSR J0740+6620, presented in Riley et al. (2021) by analyzing a combined dataset from X-ray telescopes NICER and XMM-Newton. We employ two different high-density EOS parameterizations: a piecewise-polytropic (PP) model and a model based on the speed of sound in a neutron star (CS). At nuclear densities these are connected to microscopic calculations of neutron matter based on chiral effective field theory interactions. In addition to the new NICER data for this heavy neutron star, we separately study constraints from the radio timing mass measurement of PSR J0740+6620, the gravitational wave events of binary neutron stars GW190425 and GW170817, and for the latter the associated kilonova AT2017gfo. By combining all these, and the NICER mass-radius estimate of PSR J0030+0451 we find the radius of a 1.4 solar mass neutron star to be constrained to the 95% credible ranges 12.33^{+0.76}_{-0.81} km (PP model) and 12.18^{+0.56}_{-0.79} km (CS model). In addition, we explore different chiral effective field theory calculations and show that the new NICER results provide tight constraints for the pressure of neutron star matter at around twice saturation density, which shows the power of these observations to constrain dense matter interactions at intermediate densities.
The nature of the interaction between superfluid vortices and the neutron star crust, conjectured by Anderson and Itoh in 1975 to be at the heart vortex creep and the cause of glitches, has been a long-standing question in astrophysics. Using a quali tatively new approach, we follow the dynamics as superfluid vortices move in response to the presence of nuclei (nuclear defects in the crust). The resulting motion is perpendicular to the force, similar to the motion of a spinning top when pushed. We show that nuclei repel vortices in the neutron star crust, and characterize the force as a function of the vortex-nucleus separation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا