ﻻ يوجد ملخص باللغة العربية
The statistical properties of avalanches in a dissipative particulate system under slow shear are investigated using molecular dynamics simulations. It is found that the magnitude-frequency distribution obeys the Gutenberg-Richter law only in the proximity of a critical density and that the exponent is sensitive to the minute changes in density. It is also found that aftershocks occur in this system with a decay rate that follows the Modified Omori law. We show that the exponent of the magnitude-frequency distribution and the time constant of the Modified Omori law are decreasing functions of the shear stress. The dependences of these two parameters on shear stress coincide with recent seismological observations [D. Schorlemmer et al. Nature 437, 539 (2005); C. Narteau et al. Nature 462, 642 (2009)].
The simplest solvable problem of stress transmission through a static granular material is when the grains are perfectly rigid and have an average coordination number of $bar{z}=d+1$. Under these conditions there exists an analysis of stress which is
Combining X-ray tomography with simultaneous shear force measurement, we investigate shear-induced granular avalanches using spherical particles with different surface roughness. We find that systems consisting of particles with large surface roughne
It is demonstrated, by numerical simulations of a 2D assembly of polydisperse disks, that there exists a range (plateau) of coarse graining scales for which the stress tensor field in a granular solid is nearly resolution independent, thereby enablin
Simulated granular packings with different particle friction coefficient mu are examined. The distribution of the particle-particle and particle-wall normal and tangential contact forces P(f) are computed and compared with existing experimental data.
We observe the failure process of a fiber bundle model with a variable stress release range, $gamma$, higher the value of $gamma$ lower the stress release range. By tuning $gamma$ from low to high, it is possible to go from the mean-field (MF) limit