ﻻ يوجد ملخص باللغة العربية
We observe the failure process of a fiber bundle model with a variable stress release range, $gamma$, higher the value of $gamma$ lower the stress release range. By tuning $gamma$ from low to high, it is possible to go from the mean-field (MF) limit of the model to local load sharing (LLS) where local stress concentration plays a crucial role. In the MF limit, the avalanche size $s$ and energy $E$ emitted during the avalanche are highly correlated producing the same distribution for both $P(s)$ and $Q(E)$: a scale-free distribution with a universal exponent -5/2. With increasing $gamma$, the model enters the LLS limit. In this limit, due to the presence of local stress concentration such correlation $C(gamma)$ between $s$ and $E$ decreases where the nature of the decreases depends highly on the dimension of the bundle. In 1d, the $C(gamma)$ stars from a high value for low $gamma$ and decreases towards zero when $gamma$ is increased. As a result, $Q(E)$ and $P(s)$ are similar at low $gamma$, an exponential one, and then $Q(E)$ becomes power-law for high-stress release range though $P(s)$ remains exponential. On the other hand, in 2d, the $C(gamma)$ decreases slightly with $gamma$ but remains at a high value. Due to such a high correlation, the distribution of both $s$ and $E$ is exponential in the LLS limit independent of how large $gamma$ is.
The statistical properties of avalanches in a dissipative particulate system under slow shear are investigated using molecular dynamics simulations. It is found that the magnitude-frequency distribution obeys the Gutenberg-Richter law only in the pro
We determine the nonlocal stress autocorrelation tensor in an homogeneous and isotropic system of interacting Brownian particles starting from the Smoluchowski equation of the configurational probability density. In order to relate stresses to partic
The shear stress relaxation modulus $G(t)$ may be determined from the shear stress $tau(t)$ after switching on a tiny step strain $gamma$ or by inverse Fourier transformation of the storage modulus $G^{prime}(omega)$ or the loss modulus $G^{primeprim
Bernoulli random walks, a simple avalanche model, and a special branching process are essesntially identical. The identity gives alternative insights into the properties of these basic model sytems.
We propose a new test of the critical earthquake model based on the hypothesis that precursory earthquakes are ``actors that create fluctuations in the stress field which exhibit an increasing correlation length as the critical large event becomes im