ﻻ يوجد ملخص باللغة العربية
Lateral quantum dot molecules consist of at least two closely-spaced InGaAs quantum dots arranged such that the axis connecting the quantum dots is perpendicular to the growth direction. These quantum dot complexes are called molecules because the small spacing between the quantum dots is expected to lead to the formation of molecular-like delocalized states. We present optical spectroscopy of ensembles and individual lateral quantum dot molecules as a function of electric fields applied along the growth direction. The results allow us to characterize the energy level structure of lateral quantum dot molecules and the spectral signatures of both charging and many-body interactions. We present experimental evidence for the existence of molecular-like delocalized states for electrons in the first excited energy shell.
We introduce an all-electrical measurement technique, which makes it possible to prepare and detect the ground and excited many-particle states in self-assembled InAs QDs at 4K. This way, the pure-electron spectra of QD-hydrogen, -helium and -lithium
Single lateral InGaAs quantum dot molecules have been embedded in a planar micro-cavity in order to increase the luminescence extraction efficiency. Using a combination of metal-organic vapor phase and molecular beam epitaxy samples could be produced
We present a theory and experiment demonstrating optical readout of charge and spin in a single InAs/GaAs self-assembled quantum dot. By applying a magnetic field we create the filling factor 2 quantum Hall singlet phase of the charged exciton. Incre
We have fabricated a lateral double barrier magnetic tunnel junction (MTJ) which consists of a single self-assembled InAs quantum dot (QD) with ferromagnetic Co leads. The MTJ shows clear hysteretic tunnel magnetoresistance (TMR) effect, which is evi
Polaron dephasing processes are investigated in InAs/GaAs dots using far-infrared transient four wave mixing (FWM) spectroscopy. We observe an oscillatory behaviour in the FWM signal shortly (< 5 ps) after resonant excitation of the lowest energy con