ﻻ يوجد ملخص باللغة العربية
We introduce an all-electrical measurement technique, which makes it possible to prepare and detect the ground and excited many-particle states in self-assembled InAs QDs at 4K. This way, the pure-electron spectra of QD-hydrogen, -helium and -lithium are resolved. Comparison with detailed many-body calculations enables us to identify the different charge configurations and in particular detect the singlet and triplet spin states of QD helium. Furthermore, the time-resolved evolution of the density of states from non-equilibrium to equilibrium charge occupation is shown.
Lateral quantum dot molecules consist of at least two closely-spaced InGaAs quantum dots arranged such that the axis connecting the quantum dots is perpendicular to the growth direction. These quantum dot complexes are called molecules because the sm
Anisotropy of spin-orbit interaction (SOI) is studied for a single uncapped InAs self-assembled quantum dot (SAQD) holding just a few electrons. The SOI energy is evaluated from anti-crossing or SOI induced hybridization between the ground and excite
We have fabricated a lateral double barrier magnetic tunnel junction (MTJ) which consists of a single self-assembled InAs quantum dot (QD) with ferromagnetic Co leads. The MTJ shows clear hysteretic tunnel magnetoresistance (TMR) effect, which is evi
We present a theory and experiment demonstrating optical readout of charge and spin in a single InAs/GaAs self-assembled quantum dot. By applying a magnetic field we create the filling factor 2 quantum Hall singlet phase of the charged exciton. Incre
The four-level exciton/biexciton system of a single semiconductor quantum dot acts as a two qubit register. We experimentally demonstrate an exciton-biexciton Rabi rotation conditional on the initial exciton spin in a single InGaAs/GaAs dot. This for