ﻻ يوجد ملخص باللغة العربية
Polaron dephasing processes are investigated in InAs/GaAs dots using far-infrared transient four wave mixing (FWM) spectroscopy. We observe an oscillatory behaviour in the FWM signal shortly (< 5 ps) after resonant excitation of the lowest energy conduction band transition due to coherent acoustic phonon generation. The subsequent single exponential decay yields long intraband dephasing times of 90 ps. We find excellent agreement between our measured and calculated FWM dynamics, and show that both real and virtual acoustic phonon processes are necessary to explain the temperature dependence of the polarization decay.
We calculate the lifetime of conduction band excited states in self-assembled quantum dots by taking into account LO-phonon-electron interaction and various anharmonic phonon couplings. We show that polaron relaxation cannot be accurately described b
The radiative recombination rates of interacting electron-hole pairs in a quantum dot are strongly affected by quantum correlations among electrons and holes in the dot. Recent measurements of the biexciton recombination rate in single self-assembled
We report on capacitance-voltage spectroscopy of self-assembled InAs quantum dots under constant illumination. Besides the electronic and excitonic charging peaks in the spectrum reported earlier, we find additional resonances associated with nonequi
Measuring single-electron charge is one of the most fundamental quantum technologies. Charge sensing, which is an ingredient for the measurement of single spins or single photons, has been already developed for semiconductor gate-defined quantum dots
The dephasing time of the lowest bright exciton in CdSe/ZnS wurtzite quantum dots is measured from 5 K to 170 K and compared with density dynamics within the exciton fine structure using a sensitive three-beam four-wave-mixing technique unaffected by