ترغب بنشر مسار تعليمي؟ اضغط هنا

A proposed signature of Anderson localization and correlation-induced delocalization in an N-leg optical lattice

191   0   0.0 ( 0 )
 نشر من قبل Jason Kestner
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a realization of the one-dimensional random dimer model and certain N-leg generalizations using cold atoms in an optical lattice. We show that these models exhibit multiple delocalization energies that depend strongly on the symmetry properties of the corresponding Hamiltonian and we provide analytical and numerical results for the localization length as a function of energy. We demonstrate that the N-leg systems possess similarities with their 1D ancestors but are demonstrably distinct. The existence of critical delocalization energies leads to dips in the momentum distribution which serve as a clear signal of the localization-delocalization transition. These momentum distributions are different for models with different group symmetries and are identical for those with the same symmetry.



قيم البحث

اقرأ أيضاً

Recently, the topics of many-body localization (MBL) and one-dimensional strongly interacting few-body systems have received a lot of interest. These two topics have been largely developed separately. However, the generality of the latter as far as e xternal potentials are concerned -- including random and quasirandom potentials -- and their shared spatial dimensionality, makes it an interesting way of dealing with MBL in the strongly interacting regime. Utilising tools developed for few-body systems we look to gain insight into the localization properties of the spin in a Fermi gas with strong interactions. We observe a delocalized--localized transition over a range of fillings of a quasirandom lattice. We find this transition to be of a different nature for low and high fillings, due to the diluteness of the system for low fillings.
Anderson localization (AL) is a ubiquitous interference phenomenon in which waves fail to propagate in a disordered medium. We observe three-dimensional AL of noninteracting ultracold matter by allowing a spin-polarized atomic Fermi gas to expand int o a disordered potential. A two-component density distribution emerges consisting of an expanding mobile component and a nondiffusing localized component. We extract a mobility edge that increases with the disorder strength, whereas the thermally averaged localization length is shown to decrease with disorder strength and increase with particle energy. These measurements provide a benchmark for more sophisticated theories of AL.
We show that, in contrast to immediate intuition, Anderson localization of noninteracting particles induced by a disordered potential in free space can increase (i.e., the localization length can decrease) when the particle energy increases, for appr opriately tailored disorder correlations. We predict the effect in one, two, and three dimensions, and propose a simple method to observe it using ultracold atoms placed in optical disorder. The increase of localization with the particle energy can serve to discriminate quantum versus classical localization.
129 - M. Pasienski , D. McKay , M. White 2009
Disorder can profoundly affect the transport properties of a wide range of quantum materials. Presently, there is significant disagreement regarding the effect of disorder on transport in the disordered Bose-Hubbard (DBH) model, which is the paradigm used to theoretically study disorder in strongly correlated bosonic systems. We experimentally realize the DBH model by using optical speckle to introduce precisely known, controllable, and fine-grained disorder to an optical lattice5. Here, by measuring the dissipation strength for transport, we discover a disorder-induced SF-to-insulator (IN) transition in this system, but we find no evidence for an IN-to-SF transition. Emergence of the IN at disorder strengths several hundred times the tunnelling energy agrees with a predicted SF--Bose glass (BG) transition from recent quantum Monte Carlo (QMC) work. Both the SF--IN transition and correlated changes in the atomic quasimomentum distribution--which verify a simple model for the interplay of disorder and interactions in this system--are phenomena new to the unit filling regime explored in this work, compared with the high filling limit probed previously. We find that increasing disorder strength generically leads to greater dissipation in the regime of mixed SF and Mott-insulator (MI) phases, excluding predictions of a disorder-induced, or re-entrant, SF (RSF). While the absence of an RSF may be explained by the effect of finite temperature, we strongly constrain theories by measuring bounds on the entropy per particle in the disordered lattice.
One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson loca lization, and the realization of the disordered Bose-Hubbard model. There are however still questions as to how to differentiate the complex insulating phases resulting from this interplay, and how to measure the size of the superfluid fragments that these phases entail. It has been suggested that the correlation function of such a system can give new insights, but so far little experimental investigation has been performed. Here, we show the first experimental analysis of the correlation function for a weakly interacting, bosonic system in a quasiperiodic lattice. We observe an increase in the correlation length as well as a change in shape of the correlation function in the delocalization crossover from Anderson glass to coherent, extended state. In between, the experiment indicates the formation of progressively larger coherent fragments, consistent with a fragmented BEC, or Bose glass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا