ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Localization of a Fermi Polaron in a Quasirandom Optical Lattice

84   0   0.0 ( 0 )
 نشر من قبل Callum Duncan Mr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the topics of many-body localization (MBL) and one-dimensional strongly interacting few-body systems have received a lot of interest. These two topics have been largely developed separately. However, the generality of the latter as far as external potentials are concerned -- including random and quasirandom potentials -- and their shared spatial dimensionality, makes it an interesting way of dealing with MBL in the strongly interacting regime. Utilising tools developed for few-body systems we look to gain insight into the localization properties of the spin in a Fermi gas with strong interactions. We observe a delocalized--localized transition over a range of fillings of a quasirandom lattice. We find this transition to be of a different nature for low and high fillings, due to the diluteness of the system for low fillings.



قيم البحث

اقرأ أيضاً

We propose a realization of the one-dimensional random dimer model and certain N-leg generalizations using cold atoms in an optical lattice. We show that these models exhibit multiple delocalization energies that depend strongly on the symmetry prope rties of the corresponding Hamiltonian and we provide analytical and numerical results for the localization length as a function of energy. We demonstrate that the N-leg systems possess similarities with their 1D ancestors but are demonstrably distinct. The existence of critical delocalization energies leads to dips in the momentum distribution which serve as a clear signal of the localization-delocalization transition. These momentum distributions are different for models with different group symmetries and are identical for those with the same symmetry.
Quasicrystals are long-range ordered but not periodic, representing an interesting middle ground between order and disorder. We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric quas icrystalline optical lattice. We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0=1.78(2),E_{mathrm{rec}}$ for the non-interacting system. We identify this transition by measuring the timescale required for adiabatic loading into the lattice, which diverges at the critical lattice depth for localisation. Gross-Pitaevskii simulations show that in interacting systems the transition is shifted to deeper lattices, as expected from superfluid order counteracting localisation. Our experimental results are consistent with such a mean-field shift. Quasiperiodic potentials, lacking conventional rare regions, provide the ideal testing ground to realise many-body localisation in 2D.
We study a highly imbalanced Fermi gas in a one-dimensional optical lattice from the polaronic point of view. The time-evolving block decimationg algorithm is used to calculate the ground state and dynamics of the system. We find qualitatively simila r polaronic behaviour as in the recent experiment by Schirotzek et al. cite{Schirotzek2009a} where radio-frequency spectroscopy was used to observe polarons in three-dimensional space. In the weakly interacting limit our exact results are in excellent agreement with a polaron ansatz, and in the strongly interacting limit the results match with an approximative solution of the Bethe ansatz, suggesting a crossover from a quasiparticle to a charge-density excitation regime.
We investigate topological supersolidity of dipolar Fermi gases in a spin-dependent 2D optical lattice. Numerical results show that the topological supersolid states can be synthesized via the combination of topological superfluid states with the str ipe order, where the topological superfluid states generated with dipolar interaction possess the $Delta_{x}+iDelta_{y}$ order, and it is of D class topological classification. By adjusting the ratio between hopping amplitude $t_{x}/t_{y}$ and interaction strength $U$ with dipole orientation $phi approx frac{pi}{4}$, the system will undergo phase transitions among the $p_{x}+ip_{y}$-wave topological superfluid state, the p-wave superfluid state, and the topological supersolid state. The topological supersolid state is proved to be stable by the positive sign of the inverse compressibility. We design an experimental protocol to realize the staggered next-next-nearest-neighbour hopping via the laser assisted tunneling technique, which is the key to synthesize topological supersolid states.
Motivated by recent experimental development, we investigate spin-orbit coupled repulsive Fermi atoms in a one-dimensional optical lattice. Using the density-matrix renormalization group method, we calculate momentum distribution function, gap, and s pin-correlation function to reveal rich ground-state properties. We find that spin-orbit coupling (SOC) can generate unconventional momentum distribution, which depends crucially on the filling. We call the corresponding phase with zero gap the SOC-induced metallic phase. We also show that SOC can drive the system from the antiferromagnetic to ferromagnetic Mott insulators with spin rotating. As a result, a second-order quantum phase transition between the spin-rotating ferromagnetic Mott insulator and the SOC-induced metallic phase is predicted at the strong SOC. Here the spin rotating means that the spin orientations of the nearest-neighbor sites are not parallel or antiparallel, i.e., they have an intersection angle $theta in (0,pi )$. Finally, we show that the momentum $k_{mathrm{peak}}$, at which peak of the spin-structure factor appears, can also be affected dramatically by SOC. The analytical expression of this momentum with respect to the SOC strength is also derived. It suggests that the predicted spin-rotating ferromagnetic ($k_{mathrm{peak}% }<pi /2$) and antiferromagnetic ($pi /2<k_{mathrm{peak}}<pi $) correlations can be detected experimentally by measuring the SOC-dependent spin-structure factor via the time-of-flight imaging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا