ﻻ يوجد ملخص باللغة العربية
Disorder can profoundly affect the transport properties of a wide range of quantum materials. Presently, there is significant disagreement regarding the effect of disorder on transport in the disordered Bose-Hubbard (DBH) model, which is the paradigm used to theoretically study disorder in strongly correlated bosonic systems. We experimentally realize the DBH model by using optical speckle to introduce precisely known, controllable, and fine-grained disorder to an optical lattice5. Here, by measuring the dissipation strength for transport, we discover a disorder-induced SF-to-insulator (IN) transition in this system, but we find no evidence for an IN-to-SF transition. Emergence of the IN at disorder strengths several hundred times the tunnelling energy agrees with a predicted SF--Bose glass (BG) transition from recent quantum Monte Carlo (QMC) work. Both the SF--IN transition and correlated changes in the atomic quasimomentum distribution--which verify a simple model for the interplay of disorder and interactions in this system--are phenomena new to the unit filling regime explored in this work, compared with the high filling limit probed previously. We find that increasing disorder strength generically leads to greater dissipation in the regime of mixed SF and Mott-insulator (MI) phases, excluding predictions of a disorder-induced, or re-entrant, SF (RSF). While the absence of an RSF may be explained by the effect of finite temperature, we strongly constrain theories by measuring bounds on the entropy per particle in the disordered lattice.
Topology and disorder have deep connections and a rich combined influence on quantum transport. In order to probe these connections, we synthesized one-dimensional chiral symmetric wires with controllable disorder via spectroscopic Hamiltonian engine
One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson loca
We propose a model to realize a fermionic superfluid state in an optical lattice circumventing the cooling problem. Our proposal exploits the idea of tuning the interaction in a characteristically low entropy state, a band-insulator in an optical bil
We propose a realization of the one-dimensional random dimer model and certain N-leg generalizations using cold atoms in an optical lattice. We show that these models exhibit multiple delocalization energies that depend strongly on the symmetry prope
Quasicrystals are long-range ordered but not periodic, representing an interesting middle ground between order and disorder. We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric quas