ﻻ يوجد ملخص باللغة العربية
Offshell electrodynamics based on a manifestly covariant off-shell relativistic dynamics of Stueckelberg, Horwitz and Piron, is five-dimensional. In this paper, we study the problem of radiation reaction of a particle in motion in this framework. In particular, the case of above-mass-shell is studied in detail, where the renormalization of the Lorentz force leads to a system of non-linear differential equations for 3 Lorentz scalars. The system is then solved numerically, where it is shown that the mass-shell deviation scalar $ve$ either smoothly falls down to 0 (this result provides a mechanism for the mass stability of the off-shell theory), or strongly diverges under more extreme conditions. In both cases, no runaway motion is observed. Stability analysis indicates that the system seems to have chaotic behavior in the divergent case. It is also shown that, although a motion under which the mass-shell deviation $ve$ is constant but not-zero, is indeed possible, but, it is unstable, and eventually it either decays to 0 or diverges.
In previous paper derivations of the Green function have been given for 5D off-shell electrodynamics in the framework of the manifestly covariant relativistic dynamics of Stueckelberg (with invariant evolution parameter $tau$). In this paper, we reco
The rotating reference system, two-point correlation functions, and energy density are used as the basis for investigating thermal effects observed by a detector rotating through random classical zero-point radiation. The RS consists of Frenet -Serre
A non-existence theorem of classical electrodynamics in odd-dimensional spacetimes is shown to be invalid. The source of the error is pointed out, and is then demonstrated during the derivation of the fields generated by a uniformly moving point source.
The geometrical description of a Hilbert space asociated with a quantum system considers a Hermitian tensor to describe the scalar inner product of vectors which are now described by vector fields. The real part of this tensor represents a flat Riema
We deal with the reversible dynamics of coupled quantum and classical systems. Based on a recent proposal by the authors, we exploit the theory of hybrid quantum-classical wavefunctions to devise a closure model for the coupled dynamics in which both