ﻻ يوجد ملخص باللغة العربية
In previous paper derivations of the Green function have been given for 5D off-shell electrodynamics in the framework of the manifestly covariant relativistic dynamics of Stueckelberg (with invariant evolution parameter $tau$). In this paper, we reconcile these derivations resulting in different explicit forms, and relate our results to the conventional fundamental solutions of linear 5D wave equations published in the mathematical literature. We give physical arguments for the choice of the Green function retarded in the fifth variable $tau$.
Offshell electrodynamics based on a manifestly covariant off-shell relativistic dynamics of Stueckelberg, Horwitz and Piron, is five-dimensional. In this paper, we study the problem of radiation reaction of a particle in motion in this framework. In
We construct spectral zeta functions for the Dirac operator on metric graphs. We start with the case of a rose graph, a graph with a single vertex where every edge is a loop. The technique is then developed to cover any finite graph with general ener
We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields. The
The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.
The concept of duality reflects a link between two seemingly different physical objects. An example in quantum mechanics is a situation where the spectra (or their parts) of two Hamiltonians go into each other under a certain transformation. We term