ترغب بنشر مسار تعليمي؟ اضغط هنا

Hawkings singularity theorem for $C^{1,1}$-metrics

239   0   0.0 ( 0 )
 نشر من قبل Roland Steinbauer
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a detailed proof of Hawkings singularity theorem in the regularity class $C^{1,1}$, i.e., for spacetime metrics possessing locally Lipschitz continuous first derivatives. The proof uses recent results in $C^{1,1}$-causality theory and is based on regularisation techniques adapted to the causal structure.



قيم البحث

اقرأ أيضاً

We show that the Hawking--Penrose singularity theorem, and the generalisation of this theorem due to Galloway and Senovilla, continue to hold for Lorentzian metrics that are of $C^{1, 1}$-regularity. We formulate appropriate wea
We extend the validity of the Penrose singularity theorem to spacetime metrics of regularity $C^{1,1}$. The proof is based on regularisation techniques, combined with recent results in low regularity causality theory.
Quantum fields do not satisfy the pointwise energy conditions that are assumed in the original singularity theorems of Penrose and Hawking. Accordingly, semiclassical quantum gravity lies outside their scope. Although a number of singularity theorems have been derived under weakened energy conditions, none is directly derived from quantum field theory. Here, we employ a quantum energy inequality satisfied by the quantized minimally coupled linear scalar field to derive a singularity theorem valid in semiclassical gravity. By considering a toy cosmological model, we show that our result predicts timelike geodesic incompleteness on plausible timescales with reasonable conditions at a spacelike Cauchy surface.
Hawkings singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawkings hypotheses, an important example being the massive Klein-Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein-Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein-Klein-Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete.
180 - S. Hervik , D. McNutt 2018
A pseudo-Riemannian manifold is called CSI if all scalar polynomial invariants constructed from the curvature tensor and its covariant derivatives are constant. In the Lorentzian case, the CSI spacetimes have been studied extensively due to their app lication to gravity theories. It is conjectured that a CSI spacetime is either locally homogeneous or belongs to the subclass of degenerate Kundt metrics. Independent of this conjecture, any CSI spacetime can be related to a particular locally homogeneous degenerate Kundt metric sharing the same scalar polynomial curvature invariants. In this paper we will invariantly classify the entire subclass of locally homogeneous CSI Kundt spacetimes which are of alignment type {bf D} to all orders and show that any other CSI Kundt metric can be constructed from them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا