ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field

253   0   0.0 ( 0 )
 نشر من قبل Johannes Guettinger
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present transport measurements on a strongly coupled graphene quantum dot in a perpendicular magnetic field. The device consists of an etched single-layer graphene flake with two narrow constrictions separating a 140 nm diameter island from source and drain graphene contacts. Lateral graphene gates are used to electrostatically tune the device. Measurements of Coulomb resonances, including constriction resonances and Coulomb diamonds prove the functionality of the graphene quantum dot with a charging energy of around 4.5 meV. We show the evolution of Coulomb resonances as a function of perpendicular magnetic field, which provides indications of the formation of the graphene specific 0th Landau level. Finally, we demonstrate that the complex pattern superimposing the quantum dot energy spectra is due to the formation of additional localized states with increasing magnetic field.



قيم البحث

اقرأ أيضاً

In a recent comment (arXiv:1607.06081), Falaye et al. claim that there are certain flaws in our publication (Phys. Rev. B, 78, 195427 (2008)). We point out that our results, in particular the analytic derivation of the energy spectrum of a circular g raphene quantum dot exposed to a perpendicular magnetic field, are correct and equivalent to the result of Falaye et al. A misleading notation error is corrected.
We analytically calculate the energy spectrum of a circular graphene quantum dot with radius R subjected to a perpendicular magnetic field B by applying the infinite-mass boundary condition. We can retrieve well-known limits for the cases R, B going to infinity and B going to zero. Our model is capable of capturing the essential details of recent experiments. Quantitative agreement between theory and experiment is limited due to the fact that a circular dot is not close enough to the experimental geometry, that disorder plays a significant role, and that interaction effects may be relevant.
Within the framework of a two-band tight-binding model, we have performed calculations of giant magnetoresistance, exchange coupling and thermoelectric power (TEP) for a system consisting of three magnetic layers separated by two non-magnetic spacers with the first two magnetic layers strongly antiferromagnetically exchange-coupled. We have shown how does the GMR relate with the corresponding regions of magnetic structure phase diagrams and computed some relevant hysteresis loops, too. The GMR may take negative values for specific layers thicknesses, and the TEP reveals quite pronounced oscillations around a negative bias.
We report a dual resonance feature in ballistic conductance through a quantum Hall graphene nanoribbon with a magnetic quantum dot. Such a magnetic quantum dot localizes Dirac fermions exhibiting anisotropic eigenenergy spectra with broken time-rever sal symmetry. Interplay between the localized states and quantum Hall edge states is found to be two-fold, showing Breit-Wigner and Fano resonances, which is reminiscent of a double quantum dot system. By fitting the numerical results with the Fano-Breit-Wigner lineshape from the double quantum dot model, we demonstrate that the two-fold resonance is due to the valley mixing that comes from the coupling of the magnetic quantum dot with quantum Hall edge channels; an effective double quantum dot system emerges from a single magnetic quantum dot in virtue of the valley degree of freedom. It is further confirmed that the coupling is weaker for the Fano resonance and stronger for the Breit-Wigner resonace.
Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here we report the characterization of a quantum dot couple d to a localized electronic state, and we present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through this device enable the determination of the most likely location of the localized state, consistent with an electronically active impurity in the quantum well near the edge of the quantum dot. The experiments we report are consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا