ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport through an impurity tunnel coupled to a Si/SiGe quantum dot

130   0   0.0 ( 0 )
 نشر من قبل Ryan Foote
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here we report the characterization of a quantum dot coupled to a localized electronic state, and we present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through this device enable the determination of the most likely location of the localized state, consistent with an electronically active impurity in the quantum well near the edge of the quantum dot. The experiments we report are consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.



قيم البحث

اقرأ أيضاً

249 - D. M. Zajac , T. M. Hazard , X. Mi 2015
We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots and the other is used for charge sensing. The quantum dot transport channel can support e ither a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35-70 microeV. By energizing two additional gates we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.
Characterizing charge noise is of prime importance to the semiconductor spin qubit community. We analyze the echo amplitude data from a recent experiment [Yoneda et al., Nat. Nanotechnol. 13, 102 (2018)] and note that the data shows small but consist ent deviations from a $1/f^alpha$ noise power spectrum at the higher frequencies in the measured range. We report the results of using a physical noise model based on two-level fluctuators to fit the data and find that it can mostly explain the deviations. While our results are suggestive rather than conclusive, they provide what may be an early indication of a high-frequency cutoff in the charge noise. The location of this cutoff, where the power spectral density of the noise gradually rolls off from $1/f$ to $1/f^2$, crucial knowledge for designing precise qubit control pulses, is given by our fit of the data to be around 200 kHz.
71 - Nathan Ho , Clive Emary 2019
In a recent experiment [A. Donarini et al., Nat Comms 10, 381 (2019)], electronic transport through a carbon nanotube quantum dot was observed to be suppressed by the formation of a quantum-coherent ``dark state. In this paper we consider theoretical ly the counting statistics and waiting-time distribution of this dark-state-limited transport. We show that the statistics are characterised by giant super-Poissonian Fano factors and long-tailed waiting-time distributions, both of which are signatures of the bistability and extreme electron bunching caused by the dark state.
We consider the coupling of a single mode microwave resonator to a tunnel junction whose contacts are at thermal equilibrium. We derive the quantum master equation describing the evolution of the resonator field in the strong coupling regime, where t he characteristic impedance of the resonator is larger than the quantum of resistance. We first study the case of a normal-insulator-normal junction and show that a dc driven single photon source can be obtained. We then consider the case of a superconductor-insulator-normal and superconductor-insulator-superconductor junction. There, we show that the Lamb shift induced by the junction gives rise to a nonlinear spectrum of the resonator even when the junction induced losses are negligible. We discuss the resulting dynamics and consider possible applications including quantum Zeno dynamics and the realization of a qubit.
Interactions between electrons can strongly affect the shape and functionality of multi-electron quantum dots. The resulting charge distributions can be localized, as in the case of Wigner molecules, with consequences for the energy spectrum and tunn eling to states outside the dot. The situation is even more complicated for silicon dots, due to the interplay between valley, orbital, and interaction energy scales. Here, we study two-electron wavefunctions in electrostatically confined quantum dots formed in a SiGe/Si/SiGe quantum well at zero magnetic field, using a combination of tight-binding and full-configuration-interaction (FCI) methods, and taking into account atomic-scale disorder at the quantum well interface. We model dots based on recent qubit experiments, which straddle the boundary between strongly interacting and weakly interacting systems, and display a rich and diverse range of behaviors. Our calculations show that strong electron-electron interactions, induced by weak confinement, can significantly suppress the low-lying, singlet-triplet (ST) excitation energy. However, when the valley-orbit interactions caused by interfacial disorder are weak, the ST splitting can approach its noninteracting value, even when the electron-electron interactions are strong and Wigner-molecule behavior is observed. These results have important implications for the rational design and fabrication of quantum dot qubits with predictable properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا