ﻻ يوجد ملخص باللغة العربية
We report a dual resonance feature in ballistic conductance through a quantum Hall graphene nanoribbon with a magnetic quantum dot. Such a magnetic quantum dot localizes Dirac fermions exhibiting anisotropic eigenenergy spectra with broken time-reversal symmetry. Interplay between the localized states and quantum Hall edge states is found to be two-fold, showing Breit-Wigner and Fano resonances, which is reminiscent of a double quantum dot system. By fitting the numerical results with the Fano-Breit-Wigner lineshape from the double quantum dot model, we demonstrate that the two-fold resonance is due to the valley mixing that comes from the coupling of the magnetic quantum dot with quantum Hall edge channels; an effective double quantum dot system emerges from a single magnetic quantum dot in virtue of the valley degree of freedom. It is further confirmed that the coupling is weaker for the Fano resonance and stronger for the Breit-Wigner resonace.
We report optically detected nuclear magnetic resonance (ODNMR) measurements on small ensembles of nuclear spins in single GaAs quantum dots. Using ODNMR we make direct measurements of the inhomogeneous Knight field from a photo-excited electron whic
Quantum spin transport is studied in an interacting quantum dot. It is found that a conductance plateau emerges in the non-linear charge conductance by a spin bias in the Kondo regime. The conductance plateau, as a complementary to the Kondo peak, or
We present transport measurements on a strongly coupled graphene quantum dot in a perpendicular magnetic field. The device consists of an etched single-layer graphene flake with two narrow constrictions separating a 140 nm diameter island from source
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics. Zigzag graphene nanoribbons (ZGNRs), quasi one-dimensional semiconductin
We report the experimental observation of conductance quantization in graphene nanoribbons, where 1D transport subbands are formed due to the lateral quantum confinement. We show that this quantization in graphene nanoribbons can be observed at tempe