ﻻ يوجد ملخص باللغة العربية
Developments in dynamical systems theory provides new support for the macroscale modelling of pdes and other microscale systems such as Lattice Boltzmann, Monte Carlo or Molecular Dynamics simulators. By systematically resolving subgrid microscale dynamics the dynamical systems approach constructs accurate closures of macroscale discretisations of the microscale system. Here we specifically explore reaction-diffusion problems in two spatial dimensions as a prototype of generic systems in multiple dimensions. Our approach unifies into one the modelling of systems by a type of finite elements, and the `equation free macroscale modelling of microscale simulators efficiently executing only on small patches of the spatial domain. Centre manifold theory ensures that a closed model exist on the macroscale grid, is emergent, and is systematically approximated. Dividing space either into overlapping finite elements or into spatially separated small patches, the specially crafted inter-element/patch coupling also ensures that the constructed discretisations are consistent with the microscale system/PDE to as high an order as desired. Computer algebra handles the considerable algebraic details as seen in the specific application to the Ginzburg--Landau PDE. However, higher order models in multiple dimensions require a mixed numerical and algebraic approach that is also developed. The modelling here may be straightforwardly adapted to a wide class of reaction-diffusion PDEs and lattice equations in multiple space dimensions. When applied to patches of microscopic simulations our coupling conditions promise efficient macroscale simulation.
Developments in dynamical systems theory provides new support for the discretisation of pde{}s and other microscale systems. By systematically resolving subgrid microscale dynamics the new approach constructs asymptotically accurate, macroscale closu
Developments in dynamical systems theory provides new support for the discretisation of pde{}s and other microscale systems. Here we explore the methodology applied to the gap-tooth scheme in the equation-free approach of Kevrekidis in two spatial di
We present a new computational scheme that enables efficient and reliable Quantitative Trait Loci (QTL) scans for experimental populations. Using a standard brute-force exhaustive search effectively prohibits accurate QTL scans involving more than tw
Finite difference/element/volume methods of discretising PDEs impose a subgrid scale interpolation on the dynamics. In contrast, the holistic discretisation approach developed herein constructs a natural subgrid scale field adapted to the whole syste
The estimation of the frequencies of multiple superimposed exponentials in noise is an important research problem due to its various applications from engineering to chemistry. In this paper, we propose an efficient and accurate algorithm that estima