ﻻ يوجد ملخص باللغة العربية
Developments in dynamical systems theory provides new support for the discretisation of pde{}s and other microscale systems. By systematically resolving subgrid microscale dynamics the new approach constructs asymptotically accurate, macroscale closures of discrete models of the pde. Here we explore reaction-diffusion problems in two spatial dimensions. Centre manifold theory ensures that slow manifold, holistic, discretisations exists, are quickly attractive, and are systematically approximated. Special coupling of the finite elements ensures that the resultant discretisations are consistent with the pde to as high an order as desired. Computer algebra handles the enormous algebraic details as seen in the specific application to the Ginzburg--Landau equation. However, higher order models in 2D appear to require a mixed numerical and algebraic approach that is also developed. Being driven by the residuals of the equations, the modelling here may be straightforwardly adapted to a wide class of reaction-diffusion differential and lattice equations in multiple space dimensions.
Developments in dynamical systems theory provides new support for the macroscale modelling of pdes and other microscale systems such as Lattice Boltzmann, Monte Carlo or Molecular Dynamics simulators. By systematically resolving subgrid microscale dy
Finite difference/element/volume methods of discretising PDEs impose a subgrid scale interpolation on the dynamics. In contrast, the holistic discretisation approach developed herein constructs a natural subgrid scale field adapted to the whole syste
Developments in dynamical systems theory provides new support for the discretisation of pde{}s and other microscale systems. Here we explore the methodology applied to the gap-tooth scheme in the equation-free approach of Kevrekidis in two spatial di
I prove that a centre manifold approach to creating finite difference models will consistently model linear dynamics as the grid spacing becomes small. Using such tools of dynamical systems theory gives new assurances about the quality of finite diff
The goal of this paper is to develop a numerical algorithm that solves a two-dimensional elliptic partial differential equation in a polygonal domain using tensor methods and ideas from isogeometric analysis. The proposed algorithm is based on the Fi