ﻻ يوجد ملخص باللغة العربية
The estimation of the frequencies of multiple superimposed exponentials in noise is an important research problem due to its various applications from engineering to chemistry. In this paper, we propose an efficient and accurate algorithm that estimates the frequency of each component iteratively and consecutively by combining an estimator with a leakage subtraction scheme. During the iterative process, the proposed method gradually reduces estimation error and improves the frequency estimation accuracy. We give theoretical analysis where we derive the theoretical bias and variance of the frequency estimates and discuss the convergence behaviour of the estimator. We show that the algorithm converges to the asymptotic fixed point where the estimation is asymptotically unbiased and the variance is just slightly above the Cramer-Rao lower bound. We then verify the theoretical results and estimation performance using extensive simulation. The simulation results show that the proposed algorithm is capable of obtaining more accurate estimates than state-of-art methods with only a few iterations.
In this work a general approach to compute a compressed representation of the exponential $exp(h)$ of a high-dimensional function $h$ is presented. Such exponential functions play an important role in several problems in Uncertainty Quantification, e
We present a new computational scheme that enables efficient and reliable Quantitative Trait Loci (QTL) scans for experimental populations. Using a standard brute-force exhaustive search effectively prohibits accurate QTL scans involving more than tw
The multipath radio channel is considered to have a non-bandlimited channel impulse response. Therefore, it is challenging to achieve high resolution time-delay (TD) estimation of multipath components (MPCs) from bandlimited observations of communica
Massive multiple-input multiple-output (M-MIMO) is an enabling technology of 5G wireless communication. The performance of an M-MIMO system is highly dependent on the speed and accuracy of obtaining the channel state information (CSI). The computatio
Recently, several array radar structures combined with sub-Nyquist techniques and corresponding algorithms have been extensively studied. Carrier frequency and direction-of-arrival (DOA) estimations of multiple narrow-band signals received by array r