ﻻ يوجد ملخص باللغة العربية
Electric field induced nucleation is introduced as a possible mechanism to realize a metallic phase of hydrogen. Analytical expressions are derived for the nucleation probabilities of both thermal and quantum nucleation in terms of material parameters, temperature, and the applied field. Our results show that the insulator-metal transition can be driven by an electric field within a reasonable temperature range and at much lower pressures than the current paradigm of P > 400 GPa. Both static and oscillating fields are considered and practical implementations are discussed.
The electric (E) field control of magnetic properties opens the prospects of an alternative to magnetic field or electric current activation to control magnetization. Multilayers with perpendicular magnetic anisotropy (PMA) have proven to be particul
Ferroelectric semiconductor field effect transistors (FeSmFETs), which employ ferroelectric semiconducting thin crystals of {alpha}-In2Se3 as the channel material as opposed to the gate dielectric in conventional ferroelectric FETs (FeFETs) were prep
Knowledge of the behavior of hydrogen in metal hydrides is the key for understanding their electronic properties. So far, no experimental methods exist to access these properties beyond 100 GPa, where high-Tc superconductivity emerges. Here, we prese
A detailed simple model is applied to study a metallic cluster. It is assumed that the ions and delocalized electrons are distributed randomly throughout the cluster. The delocalized electrons are assumed to be degenerate. A spherical ball models the
Using density functional theory we show that an applied electric field substantially improves the hydrogen storage properties of a BN sheet by polarizing the hydrogen molecules as well as the substrate. The adsorption energy of a single H2 molecule i