ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric Field Enhanced Hydrogen Storage on BN Sheet

112   0   0.0 ( 0 )
 نشر من قبل Jian Zhou
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using density functional theory we show that an applied electric field substantially improves the hydrogen storage properties of a BN sheet by polarizing the hydrogen molecules as well as the substrate. The adsorption energy of a single H2 molecule in the presence of an electric field of 0.05 a.u. is 0.48 eV compared to 0.07 eV in its absence. When one layer of H2 molecules is adsorbed, the binding energy per H2 molecule increases from 0.03 eV in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt % is consistent with the 6 wt % system target set by DOE for 2010. Once the applied electric field is removed, the stored H2 molecules can be easily released, thus making the storage reversible.



قيم البحث

اقرأ أيضاً

From first principles calculations, we investigate the stability and physical properties of single layer h-BN sheet chemically functionalized by various groups viz. H, F, OH, CH3, CHO, CN, NH2 etc. We find that full functionalization of h-BN sheet wi th these groups lead to decrease in its electronic band gap, albeit to different magnitudes varying from 0.3 eV to 3.1 eV, depending upon the dopant group. Functionalization by CHO group, in particular, leads to a sharp decrease in the electronic band gap of the pristine BN sheet to ~ 0.3 eV, which is congenial for its usage in transistor based devices. The phonon calculations on these sheets show that frequencies corresponding to all their vibrational modes are real (positive), thereby suggesting their inherent stability. The chemisorption energies of these groups to the B and N atoms of the sheet are found to lie in the range of 1.5 -6 eV.
We study a versatile structurally favorable periodic $sp^2$-bonded carbon atomic planar sheet with $C_{4v}$ symmetry by means of the first-principles calculations. This carbon allotrope is composed of carbon octagons and squares with two bond lengths and is thus dubbed as octagraphene. It is a semimetal with the Fermi surface consisting of one hole and one electron pocket, whose low-energy physics can be well described by a tight-binding model of $pi$-electrons. Its Youngs modulus, breaking strength and Poissons ratio are obtained to be 306 $N/m$, 34.4 $N/m$ and 0.13, respectively, which are close to those of graphene. The novel sawtooth and armchair carbon nanotubes as well as unconventional fullerenes can also be constructed from octagraphene. It is found that the Ti-absorbed octagraphene can be allowed for hydrogen storage with capacity around 7.76 wt%.
312 - Wei He , Zhenyu Li , Jinlong Yang 2008
The electronic structures of boron nitride nanotubes (BNNTs) doped by different organic molecules under a transverse electric field were investigated via first-principles calculations. The external field reduces the energy gap of BNNT, thus makes the molecular bands closer to the BNNT band edges and enhances the charge transfers between BNNT and molecules. The effects of the electric field direction on the band structure are negligible. The electric field shielding effect of BNNT to the inside organic molecules is discussed. Organic molecule doping strongly modifies the optical property of BNNT, and the absorption edge is red-shifted under static transverse electric field.
108 - M. Nardone , V. G. Karpov 2011
Electric field induced nucleation is introduced as a possible mechanism to realize a metallic phase of hydrogen. Analytical expressions are derived for the nucleation probabilities of both thermal and quantum nucleation in terms of material parameter s, temperature, and the applied field. Our results show that the insulator-metal transition can be driven by an electric field within a reasonable temperature range and at much lower pressures than the current paradigm of P > 400 GPa. Both static and oscillating fields are considered and practical implementations are discussed.
Strain induced band gap deformations of hydrogenated/fluorinated graphene and hexagonal BN sheet have been investigated using first principles density functional calculations. Within harmonic approximation, the deformation is found to be higher for h ydrogenated systems than for the fluorinated systems. Interestingly, our calculated band gap deformation for hydrogenated/fluorinated graphene and BN sheets are positive, while those for pristine graphene and BN sheet are found to be negative. This is due to the strong overlap between nearest neighbor {pi} orbitals in the pristine sheets, that is absent in the passivated systems. We also estimate the intrinsic strength of these materials under harmonic uniaxial strain, and find that the in-plane stiffness of fluorinated and hydrogenated graphene are close, but larger in magnitude as compared to those of fluorinated and hydrogenated BN sheet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا