ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure induced Hydrogen-Hydrogen interaction in metallic FeH revealed by NMR

113   0   0.0 ( 0 )
 نشر من قبل Thomas Meier Dr. rer. nat.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge of the behavior of hydrogen in metal hydrides is the key for understanding their electronic properties. So far, no experimental methods exist to access these properties beyond 100 GPa, where high-Tc superconductivity emerges. Here, we present an 1H-NMR study of cubic FeH up to 200GPa. We observe a distinct deviation from the ideal metallic behavior between 64 and 110 GPa that suggests pressure-induced H-H interactions. Accompanying ab-initio calculations support this interpretation, as they reveal the formation of an intercalating sublattice of electron density, which enhances the hydrogen contribution to the electronic density of states at the Fermi level. This study shows that pressure induced H-H interactions can occur in metal hydrides at much lower compression and larger H-H distances than previously thought and stimulates an alternative pathway in the search for novel high-temperature superconductors.



قيم البحث

اقرأ أيضاً

Atomic and electronic structures of Cu2H and CuH have been investigated by high pressure NMR spectroscopy, X-ray diffraction and ab-initio calculations. Metallic Cu2H was synthesized at a pressure of 40 GPa, and semi-metallic CuH at 90 GPa, found sta ble up to 160 GPa. Experiments and computations suggest the formation of a metallic 1H-sublattice as well as a high 1H mobility of ~10-7 cm2/s in Cu2H. Comparison of Cu2H and FeH data suggests that deviations from Fermi gas behavior, formation of conductive hydrogen networks, and high 1H mobility could be common features of metal hydrides.
115 - M. Nardone , V. G. Karpov 2011
Electric field induced nucleation is introduced as a possible mechanism to realize a metallic phase of hydrogen. Analytical expressions are derived for the nucleation probabilities of both thermal and quantum nucleation in terms of material parameter s, temperature, and the applied field. Our results show that the insulator-metal transition can be driven by an electric field within a reasonable temperature range and at much lower pressures than the current paradigm of P > 400 GPa. Both static and oscillating fields are considered and practical implementations are discussed.
125 - Sam Azadi , , Thomas D. Kuhne 2016
We use the diffusion quantum Monte Carlo to revisit the enthalpy-pressure phase diagram of the various products from the different proposed decompositions of H$_2$S at pressures above 150~GPa. Our results entails a revision of the ground-state enthal py-pressure phase diagram. Specifically, we find that the C2/c HS$_2$ structure is persistent up to 440~GPa before undergoing a phase transition into the C2/m phase. Contrary to density functional theory, our calculations suggest that the C2/m phase of HS is more stable than the I4$_1$/amd HS structure over the whole pressure range from 150 to 400 GPa. Moreover, we predict that the Im-3m phase is the most likely candidate for H$_3$S, which is consistent with recent experimental x-ray diffraction measurements.
We investigate the response of palladium-cobalt bi-layer thin films to hydrogen charging at atmospheric pressure for spintronic applications. We find that hydrogen absorption by the palladium layer results in the narrowing and shifting of the ferroma gnetic resonance line for the material. We explain the observed phenomena as originating from reduction in spin pumping effect and from variation in the magnetic anisotropy of the cobalt film through an interface effect. The shift of the resonance frequency or field is the easiest to detect. We utilize it to demonstrate functionality of the bi-layer films as a hydrogen sensor.
We investigate the optical properties of hydrogen as it undergoes a transition from the insulating molecular to the metallic atomic phase, when heated by a pulsed laser at megabar pressures in a diamond anvil cell. Most current experiments attempt to observe this transition by detecting a change in the optical reflectance and/or transmittance. Theoretical models for this change are based on the dielectric function calculated for bulk, homogeneous slabs of material. Experimentally, one expects a hydrogen plasma density that varies on a length scale not substantially smaller than the wave length of the probing light. We show that taking this inhomogeneity into account can lead to significant corrections in the reflectance and transmittance. We present a technique to calculate the optical properties of systems with a smoothly varying density of charge carriers, determine the optical response for metallic hydrogen in the diamond anvil cell experiment and contrast this with the standard results. Analyzing recent experimental results we obtain $sigma^{Drude}_{DC}=(2.1 pm 1.3) times 10^3$ ($Omega$ cm)$^{-1}$ for the conductivity of metallic hydrogen at 170 GPa and 1250 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا