ﻻ يوجد ملخص باللغة العربية
In this essay we extend the standard discussion of neutrino oscillations to astrophysical neutrinos propagating through expanding space. This extension introduces a new cosmological parameter $I$ into the oscillation phase. The new parameter records cosmic history in much the same manner as the redshift z or the apparent luminosity D_L. Measuring $I$ through neutrino oscillations could help determine cosmological parameters and discriminate among different cosmologies.
We develop in this thesis the principles governing the production of our universes primordial inhomogeneities during its early phase of inflation. As a guiding thread we ask what physics during inflation can lead to perturbations so large that they f
Using the chiral representation for spinors we present a particularly transparent way to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst action. In such theories torsion need not vanish, but i
We present a full-fledged analysis of Brans-Dicke cosmology with a cosmological constant and cold dark matter (BD-$Lambda$CDM for short). We extend the scenarios where the current cosmological value of the BD-field is restricted by the local astrophy
We consider the femto-lensing due to a cosmic string. If a cosmic string with the deficit angle $Deltasim 100$ [femto-arcsec] $sim10^{-18}$ [rad] exists around the line of sight to a gamma-ray burst, we may observe characteristic interference pattern
We consider an alternative to inflation for the generation of superhorizon perturbations in the universe in which the speed of sound is faster than the speed of light. We label such cosmologies, first proposed by Armendariz-Picon, {it tachyacoustic},