ﻻ يوجد ملخص باللغة العربية
We consider the femto-lensing due to a cosmic string. If a cosmic string with the deficit angle $Deltasim 100$ [femto-arcsec] $sim10^{-18}$ [rad] exists around the line of sight to a gamma-ray burst, we may observe characteristic interference patterns caused by gravitational lensing in the energy spectrum of the gamma-ray burst. This femto-lensing event was first proposed as a tool to probe small mass primordial black holes. In this paper, we propose use of the femto-lensing to probe cosmic strings with extremely small tension. Observability conditions and the event rate are discussed. Differences between the cases of a point mass and a cosmic string are presented.
We do a complete calculation of the stochastic gravitational wave background to be expected from cosmic strings. We start from a population of string loops taken from simulations, smooth these by Lorentzian convolution as a model of gravitational bac
We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is stro
Using a new parallel computing technique, we have run the largest cosmic string simulations ever performed. Our results confirm the existence of a long transient period where a non-scaling distribution of small loops is produced at lengths depending
We compare the spectrum of the stochastic gravitational wave background produced in several models of cosmic strings with the common-spectrum process recently reported by NANOGrav. We discuss theoretical uncertainties in computing such a background,
Recent work by Jenkins and Sakellariadou claims that cusps on cosmic strings lead to black hole production. To derive this conclusion they use the hoop conjecture in the rest frame of the string loop, rather than in the rest frame of the proposed bla