ﻻ يوجد ملخص باللغة العربية
We succeeded in measuring phase shift spectra of a microsphere cavity coupled with a tapered fiber using a weak coherent probe light at the single photon level. We utilized a tapered fiber with almost no depolarization and constructed a very stable phase shift measurement scheme based on polarization analysis using photon counting. Using a very weak probe light (bar{n} = 0:41), we succeeded in observing the transition in the phase shift spectrum between undercoupling and overcoupling (at gap distances of 500 and 100 nm, respectively).We also used quantum state tomography to obtain a purity spectrum. Even in the overcoupling regime, the average purity was 0.982 pm 0.024 (minimum purity: 0.892), suggesting that the coherence of the fiber-microsphere system was well preserved. Based on these results, we believe this system is applicable to quantum phase gates using single light emitters such as diamond nitrogen vacancy centers.
Quantum enhanced receivers are endowed with resources to achieve higher sensitivities than conventional technologies. For application in optical communications, they provide improved discriminatory capabilities for multiple non-orthogonal quantum sta
We exploit the nonlinearity arising from the spin-photon interaction in an InAs quantum dot to demonstrate phase shifts of scattered light pulses at the single-photon level. Photon phase shifts of close to 90 degrees are achieved using a charged quan
Realizing a strong interaction between individual optical photons is an important objective of research in quantum science and technology. Since photons do not interact directly, this goal requires, e.g., an optical medium in which the light experien
We apply the stochastic master equations (quantum filter) derived by Gough et al. (Proc. 50th IEEE Conference on Decision and Control, 2011) to a system consisting of a cavity driven by a multimode single photon field. In particular, we analyse the c
We demonstrate an efficient cross-phase modulation (XPM) based on a closed-loop double-{Lambda} system. The property of the double-{Lambda} medium can be controlled by changing the phases of the applied optical fields. This phase-dependent XPM scheme