ترغب بنشر مسار تعليمي؟ اضغط هنا

On the gauge structure of the calculus of variations with constraints

155   0   0.0 ( 0 )
 نشر من قبل Danilo Bruno
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A gauge-invariant formulation of constrained variational calculus, based on the introduction of the bundle of affine scalars over the configuration manifold, is presented. In the resulting setup, the Lagrangian is replaced by a section of a suitable principal fibre bundle over the velocity space. A geometric rephrasement of Pontryagins maximum principle, showing the equivalence between a constrained variational problem in the state space and a canonically associated free one in a higher affine bundle, is proved.



قيم البحث

اقرأ أيضاً

This paper contains a set of lecture notes on manifolds with boundary and corners, with particular attention to the space of quantum states. A geometrically inspired way of dealing with these kind of manifolds is presented,and explicit examples are g iven in order to clearly illustrate the main ideas.
62 - Romain Duboscq 2017
This work is concerned with the minimization of quantum entropies under local constraints of density, current, and energy. The problem arises in the work of Degond and Ringhofer about the derivation of quantum hydrodynamical models from first princip les, and is an adaptation to the quantum setting of the moment closure strategy by entropy minimization encountered in kinetic equations. The main mathematical difficulty is the lack of compactness needed to recover the energy constraint. We circumvent this issue by a monotonicity argument involving energy, temperature and entropy, that is inspired by some thermodynamical considerations.
184 - Anton Dzhamay 2013
We establish the Lagrangian nature of the discrete isospectral and isomonodromic dynamical systems corresponding to the re-factorization transformations of the rational matrix functions on the Riemann sphere. Specifically, in the isospectral case we generalize the Moser-Veselov approach to integrability of discrete systems via the re-factorization of matrix polynomials to a more general class of matrix rational functions that have a simple divisor and, in the quadratic case, explicitly write the Lagrangian function for such systems. Next we show that if we let certain parameters in this Lagrangian to be time-dependent, the resulting Euler-Lagrange equations describe the isomonodromic transformations of systems of linear difference equations. It is known that in some special cases such equations reduce to the difference Painleve equation. As an example, we show how to obtain the difference Painlev`e V equation in this way, and hence we establish that this equation can be written in the Lagrangian form.
Within the geometrical framework developed in arXiv:0705.2362, the problem of minimality for constrained calculus of variations is analysed among the class of differentiable curves. A fully covariant representation of the second variation of the acti on functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and are then reinterpreted in terms of Jacobi fields.
We continue the study of joint statistics of eigenvectors and eigenvalues initiated in the seminal papers of Chalker and Mehlig. The principal object of our investigation is the expectation of the matrix of overlaps between the left and the right eig envectors for the complex $Ntimes N$ Ginibre ensemble, conditional on an arbitrary number $k=1,2,ldots$ of complex eigenvalues.These objects provide the simplest generalisation of the expectations of the diagonal overlap ($k=1$) and the off-diagonal overlap ($k=2$) considered originally by Chalker and Mehlig. They also appear naturally in the problem of joint evolution of eigenvectors and eigenvalues for Brownian motions with values in complex matrices studied by the Krakow school. We find that these expectations possess a determinantal structure, where the relevant kernels can be expressed in terms of certain orthogonal polynomials in the complex plane. Moreover, the kernels admit a rather tractable expression for all $N geq 2$. This result enables a fairly straightforward calculation of the conditional expectation of the overlap matrix in the local bulk and edge scaling limits as well as the proof of the exact algebraic decay and asymptotic factorisation of these expectations in the bulk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا