ﻻ يوجد ملخص باللغة العربية
This paper contains a set of lecture notes on manifolds with boundary and corners, with particular attention to the space of quantum states. A geometrically inspired way of dealing with these kind of manifolds is presented,and explicit examples are given in order to clearly illustrate the main ideas.
The Chevalley-Eilenberg differential calculus and differential operators over N-graded commutative rings are constructed. This is a straightforward generalization of the differential calculus over commutative rings, and it is the most general case of
Consider a non-relativistic quantum particle with wave function inside a region $Omegasubset mathbb{R}^3$, and suppose that detectors are placed along the boundary $partial Omega$. The question how to compute the probability distribution of the time
The paper studies a class of quantum stochastic differential equations, modeling an interaction of a system with its environment in the quantum noise approximation. The space representing quantum noise is the symmetric Fock space over L^2(R_+). Using
A gauge-invariant formulation of constrained variational calculus, based on the introduction of the bundle of affine scalars over the configuration manifold, is presented. In the resulting setup, the Lagrangian is replaced by a section of a suitable
We consider differential operators between sections of arbitrary powers of the determinant line bundle over a contact manifold. We extend the standard notions of the Heisenberg calculus: noncommutative symbolic calculus, the principal symbol, and the