ﻻ يوجد ملخص باللغة العربية
Time-resolved photoelectron spectroscopy (trPES) can directly detect transient electronic structure, thus bringing out its promising potential to clarify nonequilibrium processes arising in condensed matters. Here we report the result of core-level (CL) trPES on 1T-TaS2, realized by developing a high-intensity 60 eV laser obtained by high-order harmonic (HH) generation. Ta4f CL-trPES offers the transient amplitude of the charge-density-wave (CDW), via the site-selective and real-time observation of Ta electrons. The present result indicates an ultrafast photoinduced melting and recovery of CDW amplitude, followed by a peculiar long-life oscillation (i.e. collective amplitudon excitation) accompanying the transfer of 0.01 electrons among adjacent Ta atoms. CL-trPES offers a broad range of opportunities for investigating the ultrafast atom-specific electron dynamics in photo-related phenomena of interest.
The transient optical conductivity of photoexcited 1T-TaS2 is determined over a three-order-of-magnitude frequency range. Prompt collapse and recovery of the Mott gap is observed. However, we find important differences between this transient metallic
We report temperature-dependent transport and x-ray diffraction measurements of the influence of Ti hole doping on the charge density wave (CDW) in 1T-Ta(1-x)Ti(x)S(2). Confirming past studies, we find that even trace impurities eliminate the low-tem
Direct measurements of photoexcited carrier dynamics in nickel are made using few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy at the nickel M$_{2,3}$ edge. It is observed that the core-level absorption lineshape of photoex
Two-dimensional layered transition-metal-dichalcogenide compound 1T-TaS2 shows the rare coexistence of charge density wave (CDW) and electron correlation driven Mott transition. In addition, atomic-cluster spins on the triangular lattice of the CDW s
Recent experiments have shown that the high temperature incommensurate (I) charge density wave (CDW) phase of 1T-TaS2 can be photoinduced from the lower temperature, nearly commensurate (NC) CDW state. Here we report a time-resolved x-ray diffraction