ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of Ti doping on the incommensurate charge density wave in 1T-TaS2

218   0   0.0 ( 0 )
 نشر من قبل Peter Abbamonte
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report temperature-dependent transport and x-ray diffraction measurements of the influence of Ti hole doping on the charge density wave (CDW) in 1T-Ta(1-x)Ti(x)S(2). Confirming past studies, we find that even trace impurities eliminate the low-temperature commensurate (C) phase in this system. Surprisingly, the magnitude of the in-plane component of the CDW wave vector in the nearly commensurate (NC) phase does not change significantly with Ti concentration, as might be expected from a changing Fermi surface volume. Instead, the angle of the CDW in the basal plane rotates, from 11.9 deg at x=0 to 16.4 deg at x=0.12. Ti substitution also leads to an extended region of coexistence between incommensurate (IC) and NC phases, indicating heterogeneous nucleation near the transition. Finally, we explain a resistive anomaly originally observed by DiSalvo [F. J. DiSalvo, et al., Phys. Rev. B {bf 12}, 2220 (1975)] as arising from pinning of the CDW on the crystal lattice. Our study highlights the importance of commensuration effects in the NC phase, particularly at x ~ 0.08.



قيم البحث

اقرأ أيضاً

128 - J. J. Gao , W. H. Zhang , J. G. Si 2021
We investigate the Ti-doping effect on the charge density wave (CDW) of 1T-TaS2 by combining scanning tunneling microscopy (STM) measurements and first-principle calculations. Although the Ti-doping induced phase evolution seems regular with increasi ng of the doping concentration (x), an unexpected chiral CDW phase is observed in the sample with x = 0.08, in which Ti atoms almost fully occupy the central Ta atoms in the CDW clusters. The emergence of the chiral CDW is proposed to be from the doping-enhanced orbital order. Only when x = 0.08, the possible long-range orbital order can trigger the chiral CDW phase. Compared with other 3d-elements doped 1T-TaS2, the Ti-doping retains the electronic flat band and the corresponding CDW phase, which is a prerequisite for the emergence of chirality. We expect that introducing elements with a strong orbital character may induce a chiral charge order in a broad class of CDW systems. The present results open up another avenue for further exploring the chiral CDW materials.
329 - L. J. Li , W. J. Lu , X. D. Zhu 2011
We report the interplay between charge-density-wave (CDW) and superconductivity of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ ($0leq x leq 0.05$) single crystals. The CDW order is gradually suppressed by Fe-doping, accompanied by the disappearance of pseudogap/M ott-gap as shown by the density functional theory (DFT) calculations. The superconducting state develops at low temperatures within the CDW state for the samples with the moderate doping levels. The superconductivity strongly depends on $x$ within a narrow range, and the maximum superconducting transition temperature is 2.8 K as $x=0.02$. We propose that the induced superconductivity and CDW phases are separated in real space. For high doping level ($x>0.04$), the Anderson localization (AL) state appears, resulting in a large increase of resistivity. We present a complete electronic phase diagram of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ system that shows a dome-like $T_{c}(x)$.
85 - G. Lantz , C. Laulhe , S. Ravy 2017
Recent experiments have shown that the high temperature incommensurate (I) charge density wave (CDW) phase of 1T-TaS2 can be photoinduced from the lower temperature, nearly commensurate (NC) CDW state. Here we report a time-resolved x-ray diffraction study of the growth process of the photoinduced I-CDW domains. The layered nature of the material results in a marked anisotropy in the size of the photoinduced domains of the I-phase. These are found to grow self-similarly, their shape remaining unchanged throughout the growth process. The photoinduced dynamics of the newly formed I-CDW phase was probed at various stages of the growth process using a double pump scheme, where a first pump creates I-CDW domains and a second pump excites the newly formed I-CDW state. We observe larger magnitudes of the coherently excited I-CDW amplitude mode in smaller domains, which suggests that the incommensurate lattice distortion is less stable for smaller domain sizes.
138 - S. Hellmann , M. Beye , C. Sohrt 2010
Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics in the charge-density-wave/Mott insulator 1T-TaS2. After strong photoexcitation, a prompt los s of charge order and subsequent fast equilibration dynamics of the electron-lattice system are observed. On the time scale of electron-phonon thermalization, about 1 ps, the system is driven across a phase transition from a long-range charge ordered state to a quasi-equilibrium state with domain-like short-range charge and lattice order. The experiment opens the way to study the nonequilibrium dynamics of condensed matter systems with full elemental, chemical, and atomic site selectivity.
The transition metal dichalcogenide 1T-TaS2 attract growing attention because of the formation of rich density-wave (DW) and superconducting transitions. However, the origin of the incommensurate DW state at the highest temperature (~ 550 K), which i s the parent state of the rich physical phenomena, is still uncovered. Here, we present a natural explanation for the triple-q incommensurate DW in 1T-TaS2 based on the first-principles Hubbard model with on-site U. We apply the paramagnon interference mechanism that gives the nematic order in Fe-based superconductors. The derived order parameter has very unique characters: (i) the orbital-selective nature, and (ii) the unconventional sign-reversal in both momentum and energy spaces. The present study will be useful for understanding rich physics in 1T-TaS2, 1T-VSe2, and other transition metal dichalcogenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا