ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron Thermalization and Relaxation in Laser-Heated Nickel by Few-Femtosecond Core-Level Transient Absorption Spectroscopy

135   0   0.0 ( 0 )
 نشر من قبل Hung-Tzu Chang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Direct measurements of photoexcited carrier dynamics in nickel are made using few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy at the nickel M$_{2,3}$ edge. It is observed that the core-level absorption lineshape of photoexcited nickel can be described by a Gaussian broadening ($sigma$) and a red shift ($omega_{s}$) of the ground state absorption spectrum. Theory predicts, and the experimental results verify that after initial rapid carrier thermalization, the electron temperature increase ($Delta T$) is linearly proportional to the Gaussian broadening factor $sigma$, providing quantitative real-time tracking of the relaxation of the electron temperature. Measurements reveal an electron cooling time for 50 nm thick polycrystalline nickel films of 640$pm$80 fs. With hot thermalized carriers, the spectral red shift exhibits a power-law relationship with the change in electron temperature of $omega_{s}proptoDelta T^{1.5}$. Rapid electron thermalization via carrier-carrier scattering accompanies and follows the nominal 4 fs photoexcitation pulse until the carriers reach a quasi-thermal equilibrium. Entwined with a <6 fs instrument response function, carrier thermalization times ranging from 34 fs to 13 fs are estimated from experimental data acquired at different pump fluences and it is observed that the electron thermalization time decreases with increasing pump fluence. The study provides an initial example of measuring electron temperature and thermalization in metals in real time with XUV light, and it lays a foundation for further investigation of photoinduced phase transitions and carrier transport in metals with core-level absorption spectroscopy.



قيم البحث

اقرأ أيضاً

Few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy, performed with optical 500-1000 nm supercontinuum and broadband XUV pulses (30-50 eV), simultaneously probes dynamics of photoexcited carriers in WS$_{2}$ at the W O$_3$ edg e (37-45 eV) and carrier-induced modifications of core-exciton absorption at the W N$_{6,7}$ edge (32-37 eV). Access to continuous core-to-conduction band absorption features and discrete core-exciton transitions in the same XUV spectral region in a semiconductor provides a novel means to investigate the effect of carrier excitation on core-exciton dynamics. The core-level transient absorption spectra, measured with either pulse arriving first to explore both core-level and valence carrier dynamics, reveal that core-exciton transitions are strongly influenced by the photoexcited carriers. A $1.2pm0.3$ ps hole-phonon relaxation time and a $3.1pm0.4$ ps carrier recombination time are extracted from the XUV transient absorption spectra from the core-to-conduction band transitions at the W O$_{3}$ edge. Global fitting of the transient absorption signal at the W N$_{6,7}$ edge yields $sim 10$ fs coherence lifetimes of core-exciton states and reveals that the photoexcited carriers, which alter the electronic screening and band filling, are the dominant contributor to the spectral modifications of core-excitons and direct field-induced changes play a minor role. This work provides a first look at the modulations of core-exciton states by photoexcited carriers and advances our understanding of carrier dynamics in metal dichalcogenides.
The relaxation dynamics of hot carriers in silicon (100) is studied via a novel holistic approach based on phase-resolved transient absorption spectroscopy with few-cycle optical pulses. After excitation by a sub-5 fs light pulse, strong electron-pho non coupling leads to an ultrafast momentum relaxation with time constant of 10 fs. The thermalization of the hot carriers occurs on a time constant of 150 fs, visible in the temporal evolution of the collision time as extracted from the Drude model. We find an increase of the collision time from 3 fs for the shortest timescales with a saturation at approximately 18 fs. Moreover, the optical effective mass of the hot carrier ensemble evolves on ultrafast timescales as well, with a bi-exponential decrease from 0.7 $m_e$ to about 0.125 $m_e$ and time constants of 4 fs and 58 fs. The presented information on the electron mass dynamics as well as the momentum-, energy-, and collision-scattering times with unprecedented time resolution is important for all hot carrier optoelectronic devices.
Time-resolved photoelectron spectroscopy (trPES) can directly detect transient electronic structure, thus bringing out its promising potential to clarify nonequilibrium processes arising in condensed matters. Here we report the result of core-level ( CL) trPES on 1T-TaS2, realized by developing a high-intensity 60 eV laser obtained by high-order harmonic (HH) generation. Ta4f CL-trPES offers the transient amplitude of the charge-density-wave (CDW), via the site-selective and real-time observation of Ta electrons. The present result indicates an ultrafast photoinduced melting and recovery of CDW amplitude, followed by a peculiar long-life oscillation (i.e. collective amplitudon excitation) accompanying the transfer of 0.01 electrons among adjacent Ta atoms. CL-trPES offers a broad range of opportunities for investigating the ultrafast atom-specific electron dynamics in photo-related phenomena of interest.
We employ few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to reveal simultaneously the intra- and interband carrier relaxation and the light-induced structural dynamics in nanoscale thin films of layered 2H-MoTe$_{2}$ semi conductor. By interrogating the valence electronic structure via localized Te 4$textit{d}$ (39-46 eV) and Mo 4$textit{p}$ (35-38 eV) core levels, the relaxation of the photoexcited hole distribution is directly observed in real time. We obtain hole thermalization and cooling times of 15$pm$5 fs and 380$pm$90 fs, respectively, and an electron-hole recombination time of 1.5$pm$0.1 ps. Furthermore, excitations of coherent out-of-plane A$_{1g}$ (5.1 THz) and in-plane E$_{1g}$ (3.7 THz) lattice vibrations are visualized through oscillations in the XUV absorption spectra. By comparison to Bethe-Salpeter equation simulations, the spectral changes are mapped to real-space excited-state displacements of the lattice along the dominant A$_{1g}$ coordinate. By directly and simultaneously probing the excited carrier distribution dynamics and accompanying femtosecond lattice displacement in 2H-MoTe$_{2}$ within a single experiment, our work provides a benchmark for understanding the interplay between electronic and structural dynamics in photoexcited nanomaterials.
Femtosecond carrier recombination in PbI2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafast electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. The XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10-9 cm3/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا