ﻻ يوجد ملخص باللغة العربية
This article concerns the resolution of impartial combinatorial games, and in particular games that can be split in sums of independent positions. We prove that in order to compute the outcome of a sum of independent positions, it is always more efficient to compute separately the nimbers of each independent position than to develop directly the game tree of the sum. The concept of nimber is therefore inevitable to solve impartial games, even when we only try to determinate the winning or losing outcome of a starting position. We also describe algorithms to use nimbers efficiently and finally, we give a review of the results obtained on two impartial games: Sprouts and Cram.
Sprouts is a two-player topological game, invented in 1967 in the University of Cambridge by John Conway and Michael Paterson. The game starts with p spots, and ends in at most 3p-1 moves. The first player who cannot play loses. The complexity of t
We analyze the computational complexity of the popular computer games Threes!, 1024!, 2048 and many of their variants. For most kno
Evolvability is an important feature that impacts the ability of evolutionary processes to find interesting novel solutions and to deal with changing conditions of the problem to solve. The estimation of evolvability is not straightforward and is gen
In a biased weak $(a,b)$ polyform achievement game, the maker and the breaker alternately mark $a,b$ previously unmarked cells on an infinite board, respectively. The makers goal is to mark a set of cells congruent to a polyform. The breaker tries to
A social choice correspondence satisfies balancedness if, for every pair of alternatives, x and y, and every pair of individuals, i and j, whenever a profile has x adjacent to but just above y for individual i while individual j has y adjacent to but