ﻻ يوجد ملخص باللغة العربية
Evolvability is an important feature that impacts the ability of evolutionary processes to find interesting novel solutions and to deal with changing conditions of the problem to solve. The estimation of evolvability is not straightforward and is generally too expensive to be directly used as selective pressure in the evolutionary process. Indirectly promoting evolvability as a side effect of other easier and faster to compute selection pressures would thus be advantageous. In an unbounded behavior space, it has already been shown that evolvable individuals naturally appear and tend to be selected as they are more likely to invade empty behavior niches. Evolvability is thus a natural byproduct of the search in this context. However, practical agents and environments often impose limits on the reach-able behavior space. How do these boundaries impact evolvability? In this context, can evolvability still be promoted without explicitly rewarding it? We show that Novelty Search implicitly creates a pressure for high evolvability even in bounded behavior spaces, and explore the reasons for such a behavior. More precisely we show that, throughout the search, the dynamic evaluation of novelty rewards individuals which are very mobile in the behavior space, which in turn promotes evolvability.
Reward-based optimization algorithms require both exploration, to find rewards, and exploitation, to maximize performance. The need for efficient exploration is even more significant in sparse reward settings, in which performance feedback is given s
We present in this paper an exertion of our previous work by increasing the robustness and coverage of the evolution search via hybridisation with a state-of-the-art novelty search and accelerate the individual agent behaviour searches via a novel be
We present a neural architecture search algorithm to construct compact reinforcement learning (RL) policies, by combining ENAS and ES in a highly scalable and intuitive way. By defining the combinatorial search space of NAS to be the set of different
Different subsystems of organisms adapt over many time scales, such as rapid changes in the nervous system (learning), slower morphological and neurological change over the lifetime of the organism (postnatal development), and change over many genera
Reinforcement Learning (RL) has made remarkable achievements, but it still suffers from inadequate exploration strategies, sparse reward signals, and deceptive reward functions. These problems motivate the need for a more efficient and directed explo