ﻻ يوجد ملخص باللغة العربية
Sprouts is a two-player topological game, invented in 1967 in the University of Cambridge by John Conway and Michael Paterson. The game starts with p spots, and ends in at most 3p-1 moves. The first player who cannot play loses. The complexity of the p-spot game is very high, so that the best hand-checked proof only shows who the winner is for the 7-spot game, and the best previous computer analysis reached p=11. We have written a computer program, using mainly two new ideas. The nimber (also known as Sprague-Grundy number) allows us to compute separately independent subgames; and when the exploration of a part of the game tree seems to be too difficult, we can manually force the program to search elsewhere. Thanks to these improvements, we reached up to p=32. The outcome of the 33-spot game is still unknown, but the biggest computed value is the 47-spot game ! All the computed values support the Sprouts conjecture: the first player has a winning strategy if and only if p is 3, 4 or 5 modulo 6. We have also used a check algorithm to reduce the number of positions needed to prove which player is the winner. It is now possible to hand-check all the games until p=11 in a reasonable amount of time.
This article concerns the resolution of impartial combinatorial games, and in particular games that can be split in sums of independent positions. We prove that in order to compute the outcome of a sum of independent positions, it is always more effi
Sprouts is a two-player topological game, invented in 1967 by Michael Paterson and John Conway. The game starts with p spots drawn on a sheet of paper, and lasts at most 3p-1 moves: the player who makes the last move wins. Sprouts is a very intrica
A special class of Jordan algebras over a field $F$ of characteristic zero is considered. Such an algebra consists of an $r$-dimensional subspace of the vector space of all square matrices of a fixed order $n$ over $F$. It contains the identity matri
There exists many complicated $k$-noncrossing pseudoknot RNA structures in nature based on some special conditions. The special characteristic of RNA structures gives us great challenges in researching the enumeration, prediction and the analysis of
We consider a constrained version of the shortest path problem on the complete graphs whose edges have independent random lengths and costs. We establish the asymptotic value of the minimum length as a function of the cost-budget within a wide range.