ترغب بنشر مسار تعليمي؟ اضغط هنا

Density Functional of a Two-Dimensional Gas of Dipolar Atoms: Thomas-Fermi-Dirac Treatment

341   0   0.0 ( 0 )
 نشر من قبل Berthold-Georg Englert
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.



قيم البحث

اقرأ أيضاً

166 - B. P. van Zyl , W. Kirkby , 2015
Density-functional theory is utilized to investigate the zero-temperature transition from a Fermi liquid to an inhomogeneous stripe, or Wigner crystal phase, predicted to occur in a one-component, spin-polarized, two-dimensional dipolar Fermi gas. Co rrelations are treated semi-exactly within the local-density approximation using an empirical fit to Quantum Monte Carlo data. We find that the inclusion of the nonlocal contribution to the Hartree-Fock energy is crucial for the onset of an instability to an inhomogeneous density distribution. Our density-functional theory supports a transition to both a one-dimensional stripe phase, and a triangular Wigner crystal. However, we find that there is an instability first to the stripe phase, followed by a transition to the Wigner crystal at higher coupling.
We systematically develop a density functional description for the equilibrium properties of a two-dimensional, harmonically trapped, spin-polarized dipolar Fermi gas based on the Thomas-Fermi von Weizsacker approximation. We pay particular attention to the construction of the two-dimensional kinetic energy functional, where corrections beyond the local density approximation must be motivated with care. We also present an intuitive derivation of the interaction energy functional associated with the dipolar interactions, and provide physical insight into why it can be represented as a local functional. Finally, a simple, and highly efficient self-consistent numerical procedure is developed to determine the equilibrium density of the system for a range of dipole interaction strengths.
288 - Zhen-Kai Lu , S.I. Matveenko , 2013
We study zero sound in a weakly interacting 2D gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean field and many-body (beyond mean field) effects, and the anisotropy of the sound velocity is the same as the one of the Fermi velocity. The damping of zero sound modes can be much slower than that of quasiparticle excitations of the same energy. One thus has wide possibilities for the observation of zero sound modes in experiments with 2D fermionic dipoles, although the zero sound peak in the structure function is very close to the particle-hole continuum.
We realize a two-component dipolar Fermi gas with tunable interactions, using erbium atoms. Employing a lattice-protection technique, we selectively prepare deeply degenerate mixtures of the two lowest spin states and perform high-resolution Feshbach spectroscopy in an optical dipole trap. We identify a comparatively broad Feshbach resonance and map the interspin scattering length in its vicinity. The Fermi mixture shows a remarkable collisional stability in the strongly interacting regime, providing a first step towards studies of superfluid pairing, crossing from Cooper pairs to bound molecules, in presence of dipole-dipole interactions.
We determine the energy density $xi (3/5) n epsilon_F$ and the gradient correction $lambda hbar^2( abla n)^2/(8m n)$ of the extended Thomas-Fermi (ETF) density functional, where $n$ is number density and $epsilon_F$ is Fermi energy, for a trapped two -components Fermi gas with infinite scattering length (unitary Fermi gas) on the basis of recent diffusion Monte Carlo (DMC) calculations [Phys. Rev. Lett. {bf 99}, 233201 (2007)]. In particular we find that $xi=0.455$ and $lambda=0.13$ give the best fit of the DMC data with an even number $N$ of particles. We also study the odd-even splitting $gamma N^{1/9} hbar omega$ of the ground-state energy for the unitary gas in a harmonic trap of frequency $omega$ determining the constant $gamma$. Finally we investigate the effect of the gradient term in the time-dependent ETF model by introducing generalized Galilei-invariant hydrodynamics equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا