ﻻ يوجد ملخص باللغة العربية
We realize a two-component dipolar Fermi gas with tunable interactions, using erbium atoms. Employing a lattice-protection technique, we selectively prepare deeply degenerate mixtures of the two lowest spin states and perform high-resolution Feshbach spectroscopy in an optical dipole trap. We identify a comparatively broad Feshbach resonance and map the interspin scattering length in its vicinity. The Fermi mixture shows a remarkable collisional stability in the strongly interacting regime, providing a first step towards studies of superfluid pairing, crossing from Cooper pairs to bound molecules, in presence of dipole-dipole interactions.
We theoretically investigate a polarized dipolar Fermi gas in free expansion. The inter-particle dipolar interaction deforms phase-space distribution in trap and also in the expansion. We exactly predict the minimal quadrupole deformation in the expa
We measure the magnetic susceptibility of a Fermi gas with tunable interactions in the low-temperature limit and compare it to quantum Monte Carlo calculations. Experiment and theory are in excellent agreement and fully compatible with the Landau the
We present an experimental investigation of the dynamic spin response of a strongly interacting Fermi gas using Bragg spectroscopy. By varying the detuning of the Bragg lasers, we show that it is possible to measure the response in the spin and densi
Ultracold atomic Fermi gases present an opportunity to study strongly interacting Fermi systems in a controlled and uncomplicated setting. The ability to tune attractive interactions has led to the discovery of superfluidity in these systems with an
Many-body fermion systems are important in many branches of physics, including condensed matter, nuclear, and now cold atom physics. In many cases, the interactions between fermions can be approximated by a contact interaction. A recent theoretical a