ﻻ يوجد ملخص باللغة العربية
Recently, Deutsch and Elizalde studied the largest and the smallest fixed points of permutations. Motivated by their work, we consider the analogous problems in set partitions. Let $A_{n,k}$ denote the number of partitions of ${1,2,dots, n+1}$ with the largest singleton ${k+1}$ for $0leq kleq n$. In this paper, several explicit formulas for $A_{n,k}$, involving a Dobinski-type analog, are obtained by algebraic and combinatorial methods, many combinatorial identities involving $A_{n,k}$ and Bell numbers are presented by operator methods, and congruence properties of $A_{n,k}$ are also investigated. It will been showed that the sequences $(A_{n+k,k})_{ngeq 0}$ and $(A_{n+k,k})_{kgeq 0}$ (mod $p$) are periodic for any prime $p$, and contain a string of $p-1$ consecutive zeroes. Moreover their minimum periods are conjectured to be $N_p=frac{p^p-1}{p-1}$ for any prime $p$.
Recently, Deutsch and Elizalde studied the largest and the smallest fixed points of permutations. Motivated by their work, we consider the analogous problems in weighted set partitions. Let $A_{n,k}(mathbf{t})$ denote the total weight of partitions o
We study the restricted growth function associated with set partitions, and obtain exact formulas for the number of strong records with height one, the total of record heights over set of partitions, and the number of partitions with a given maximal
We prove three main conjectures of Berkovich and Uncu (Ann. Comb. 23 (2019) 263--284) on the inequalities between the numbers of partitions of $n$ with bounded gap between largest and smallest parts for sufficiently large $n$. Actually our theorems a
We study statistics on ordered set partitions whose generating functions are related to $p,q$-Stirling numbers of the second kind. The main purpose of this paper is to provide bijective proofs of all the conjectures of stein (Arxiv:math.CO/0605670).
The symmetric group $mathfrak{S}_n$ acts on the polynomial ring $mathbb{Q}[mathbf{x}_n] = mathbb{Q}[x_1, dots, x_n]$ by variable permutation. The invariant ideal $I_n$ is the ideal generated by all $mathfrak{S}_n$-invariant polynomials with vanishing