ترغب بنشر مسار تعليمي؟ اضغط هنا

Euler-Mahonian Statistics On Ordered Set Partitions (II)

153   0   0.0 ( 0 )
 نشر من قبل Jiang Zeng
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study statistics on ordered set partitions whose generating functions are related to $p,q$-Stirling numbers of the second kind. The main purpose of this paper is to provide bijective proofs of all the conjectures of stein (Arxiv:math.CO/0605670). Our basic idea is to encode ordered partitions by a kind of path diagrams and explore the rich combinatorial properties of the latter structure. We also give a partition version of MacMahons theorem on the equidistribution of the statistics inversion number and major index on words.



قيم البحث

اقرأ أيضاً

In 1997 Clarke et al. studied a $q$-analogue of Eulers difference table for $n!$ using a key bijection $Psi$ on symmetric groups. In this paper we extend their results to the wreath product of a cyclic group with the symmetric group. In particular we obtain a new mahonian statistic emph{fmaf} on wreath products. We also show that Foata and Hans two recent transformations on the symmetric groups provide indeed a factorization of $Psi$.
A relationship between signed Eulerian polynomials and the classical Eulerian polynomials on $mathfrak{S}_n$ was given by D{e}sarm{e}nien and Foata in 1992, and a refined version, called signed Euler-Mahonian identity, together with a bijective proof were proposed by Wachs in the same year. By generalizing this bijection, in this paper we extend the above results to the Coxeter groups of types $B_n$, $D_n$, and the complex reflection group $G(r,1,n)$, where the `sign is taken to be any one-dimensional character. Some obtained identities can be further restricted on some particular set of permutations. We also derive some new interesting sign-balance polynomials for types $B_n$ and $D_n$.
The symmetric group $mathfrak{S}_n$ acts on the polynomial ring $mathbb{Q}[mathbf{x}_n] = mathbb{Q}[x_1, dots, x_n]$ by variable permutation. The invariant ideal $I_n$ is the ideal generated by all $mathfrak{S}_n$-invariant polynomials with vanishing constant term. The quotient $R_n = frac{mathbb{Q}[mathbf{x}_n]}{I_n}$ is called the coinvariant algebra. The coinvariant algebra $R_n$ has received a great deal of study in algebraic and geometric combinatorics. We introduce a generalization $I_{n,k} subseteq mathbb{Q}[mathbf{x}_n]$ of the ideal $I_n$ indexed by two positive integers $k leq n$. The corresponding quotient $R_{n,k} := frac{mathbb{Q}[mathbf{x}_n]}{I_{n,k}}$ carries a graded action of $mathfrak{S}_n$ and specializes to $R_n$ when $k = n$. We generalize many of the nice properties of $R_n$ to $R_{n,k}$. In particular, we describe the Hilbert series of $R_{n,k}$, give extensions of the Artin and Garsia-Stanton monomial bases of $R_n$ to $R_{n,k}$, determine the reduced Grobner basis for $I_{n,k}$ with respect to the lexicographic monomial order, and describe the graded Frobenius series of $R_{n,k}$. Just as the combinatorics of $R_n$ are controlled by permutations in $mathfrak{S}_n$, we will show that the combinatorics of $R_{n,k}$ are controlled by ordered set partitions of ${1, 2, dots, n}$ with $k$ blocks. The {em Delta Conjecture} of Haglund, Remmel, and Wilson is a generalization of the Shuffle Conjecture in the theory of diagonal coinvariants. We will show that the graded Frobenius series of $R_{n,k}$ is (up to a minor twist) the $t = 0$ specialization of the combinatorial side of the Delta Conjecture. It remains an open problem to give a bigraded $mathfrak{S}_n$-module $V_{n,k}$ whose Frobenius image is even conjecturally equal to any of the expressions in the Delta Conjecture; our module $R_{n,k}$ solves this problem in the specialization $t = 0$.
358 - Yidong Sun , Xiaojuan Wu 2010
Recently, Deutsch and Elizalde studied the largest and the smallest fixed points of permutations. Motivated by their work, we consider the analogous problems in set partitions. Let $A_{n,k}$ denote the number of partitions of ${1,2,dots, n+1}$ with t he largest singleton ${k+1}$ for $0leq kleq n$. In this paper, several explicit formulas for $A_{n,k}$, involving a Dobinski-type analog, are obtained by algebraic and combinatorial methods, many combinatorial identities involving $A_{n,k}$ and Bell numbers are presented by operator methods, and congruence properties of $A_{n,k}$ are also investigated. It will been showed that the sequences $(A_{n+k,k})_{ngeq 0}$ and $(A_{n+k,k})_{kgeq 0}$ (mod $p$) are periodic for any prime $p$, and contain a string of $p-1$ consecutive zeroes. Moreover their minimum periods are conjectured to be $N_p=frac{p^p-1}{p-1}$ for any prime $p$.
Generalizing the decomposition of a connected planar graph into a tree and a dual tree, we prove a combinatorial analog of the classic Helmholz-Hodge decomposition of a smooth vector field. Specifically, we show that for every polyhedral complex, $K$ , and every dimension, $p$, there is a partition of the set of $p$-cells into a maximal $p$-tree, a maximal $p$-cotree, and a collection of $p$-cells whose cardinality is the $p$-th Betti number of $K$. Given an ordering of the $p$-cells, this tri-partition is unique, and it can be computed by a matrix reduction algorithm that also constructs canonical bases of cycle and boundary groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا