ترغب بنشر مسار تعليمي؟ اضغط هنا

The largest singletons in weighted set partitions and its applications

213   0   0.0 ( 0 )
 نشر من قبل Yidong Sun
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, Deutsch and Elizalde studied the largest and the smallest fixed points of permutations. Motivated by their work, we consider the analogous problems in weighted set partitions. Let $A_{n,k}(mathbf{t})$ denote the total weight of partitions on $[n+1]$ with the largest singleton ${k+1}$. In this paper, explicit formulas for $A_{n,k}(mathbf{t})$ and many combinatorial identities involving $A_{n,k}(mathbf{t})$ are obtained by umbral operators and combinatorial methods. As applications, we investigate three special cases such as permutations, involutions and labeled forests. Particularly in the permutation case, we derive a surprising identity analogous to the Riordan identity related to tree enumerations, namely, begin{eqnarray*} sum_{k=0}^{n}binom{n}{k}D_{k+1}(n+1)^{n-k} &=& n^{n+1}, end{eqnarray*} where $D_{k}$ is the $k$-th derangement number or the number of permutations of ${1,2,dots, k}$ with no fixed points.



قيم البحث

اقرأ أيضاً

350 - Yidong Sun , Xiaojuan Wu 2010
Recently, Deutsch and Elizalde studied the largest and the smallest fixed points of permutations. Motivated by their work, we consider the analogous problems in set partitions. Let $A_{n,k}$ denote the number of partitions of ${1,2,dots, n+1}$ with t he largest singleton ${k+1}$ for $0leq kleq n$. In this paper, several explicit formulas for $A_{n,k}$, involving a Dobinski-type analog, are obtained by algebraic and combinatorial methods, many combinatorial identities involving $A_{n,k}$ and Bell numbers are presented by operator methods, and congruence properties of $A_{n,k}$ are also investigated. It will been showed that the sequences $(A_{n+k,k})_{ngeq 0}$ and $(A_{n+k,k})_{kgeq 0}$ (mod $p$) are periodic for any prime $p$, and contain a string of $p-1$ consecutive zeroes. Moreover their minimum periods are conjectured to be $N_p=frac{p^p-1}{p-1}$ for any prime $p$.
122 - Shane Chern , Dazhao Tang 2017
Inspired by Andrews 2-colored generalized Frobenius partitions, we consider certain weighted 7-colored partition functions and establish some interesting Ramanujan-type identities and congruences. Moreover, we provide combinatorial interpretations of some congruences modulo 5 and 7. Finally, we study the properties of weighted 7-colored partitions weighted by the parity of certain partition statistics.
We prove three main conjectures of Berkovich and Uncu (Ann. Comb. 23 (2019) 263--284) on the inequalities between the numbers of partitions of $n$ with bounded gap between largest and smallest parts for sufficiently large $n$. Actually our theorems a re stronger than their original conjectures. The analytic version of our results shows that the coefficients of some partition $q$-series are eventually positive.
We study the restricted growth function associated with set partitions, and obtain exact formulas for the number of strong records with height one, the total of record heights over set of partitions, and the number of partitions with a given maximal height of strong records. We also extend some of these results to weak records.
The symmetric group $mathfrak{S}_n$ acts on the polynomial ring $mathbb{Q}[mathbf{x}_n] = mathbb{Q}[x_1, dots, x_n]$ by variable permutation. The invariant ideal $I_n$ is the ideal generated by all $mathfrak{S}_n$-invariant polynomials with vanishing constant term. The quotient $R_n = frac{mathbb{Q}[mathbf{x}_n]}{I_n}$ is called the coinvariant algebra. The coinvariant algebra $R_n$ has received a great deal of study in algebraic and geometric combinatorics. We introduce a generalization $I_{n,k} subseteq mathbb{Q}[mathbf{x}_n]$ of the ideal $I_n$ indexed by two positive integers $k leq n$. The corresponding quotient $R_{n,k} := frac{mathbb{Q}[mathbf{x}_n]}{I_{n,k}}$ carries a graded action of $mathfrak{S}_n$ and specializes to $R_n$ when $k = n$. We generalize many of the nice properties of $R_n$ to $R_{n,k}$. In particular, we describe the Hilbert series of $R_{n,k}$, give extensions of the Artin and Garsia-Stanton monomial bases of $R_n$ to $R_{n,k}$, determine the reduced Grobner basis for $I_{n,k}$ with respect to the lexicographic monomial order, and describe the graded Frobenius series of $R_{n,k}$. Just as the combinatorics of $R_n$ are controlled by permutations in $mathfrak{S}_n$, we will show that the combinatorics of $R_{n,k}$ are controlled by ordered set partitions of ${1, 2, dots, n}$ with $k$ blocks. The {em Delta Conjecture} of Haglund, Remmel, and Wilson is a generalization of the Shuffle Conjecture in the theory of diagonal coinvariants. We will show that the graded Frobenius series of $R_{n,k}$ is (up to a minor twist) the $t = 0$ specialization of the combinatorial side of the Delta Conjecture. It remains an open problem to give a bigraded $mathfrak{S}_n$-module $V_{n,k}$ whose Frobenius image is even conjecturally equal to any of the expressions in the Delta Conjecture; our module $R_{n,k}$ solves this problem in the specialization $t = 0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا