ترغب بنشر مسار تعليمي؟ اضغط هنا

Two qubit conditional quantum logic operation in a single self-assembled quantum dot

129   0   0.0 ( 0 )
 نشر من قبل Andrew Ramsay
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The four-level exciton/biexciton system of a single semiconductor quantum dot acts as a two qubit register. We experimentally demonstrate an exciton-biexciton Rabi rotation conditional on the initial exciton spin in a single InGaAs/GaAs dot. This forms the basis of an optically gated two-qubit controlled-rotation (CROT) quantum logic operation where an arbitrary exciton spin is selected as the target qubit using the polarization of the control laser.



قيم البحث

اقرأ أيضاً

Anisotropy of spin-orbit interaction (SOI) is studied for a single uncapped InAs self-assembled quantum dot (SAQD) holding just a few electrons. The SOI energy is evaluated from anti-crossing or SOI induced hybridization between the ground and excite d states with opposite spins. The magnetic angular dependence of the SOI energy falls on an absolute cosine function for azimuthal rotation, and a cosine-like function for tilting rotation. The SOI energy is even quenched at a specific rotation. These angular dependence compare well to calculation of Rashba SOI in a two-dimensional harmonic potential.
215 - D. Heiss , V. Jovanov , M. Caesar 2009
We report the investigation of a single quantum dot charge storage device. The device allows selective optical charging of a single dot with electrons, storage of these charges over timescales much longer than microseconds and reliable optical readou t of the charge occupancy using a time gated photoluminescence technique. This device enables us to directly investigate the electric field dependent tunneling escape dynamics of electrons at high electric fields over timescales up to 4 us. The results demonstrate that such structures and measurement techniques can be used to investigate charge and spin dynamics in single quantum dots over microsecond timescales.
We have performed detailed photoluminescence (PL) and absorption spectroscopy on the same single self-assembled quantum dot in a charge-tunable device. The transition from neutral to charged exciton in the PL occurs at a more negative voltage than th e corresponding transition in absorption. We have developed a model of the Coulomb blockade to account for this observation. At large negative bias, the absorption broadens as a result of electron and hole tunneling. We observe resonant features in this regime whenever the quantum dot hole level is resonant with two-dimensional hole states located at the capping layer-blocking barrier interface in our structure.
We have fabricated a lateral double barrier magnetic tunnel junction (MTJ) which consists of a single self-assembled InAs quantum dot (QD) with ferromagnetic Co leads. The MTJ shows clear hysteretic tunnel magnetoresistance (TMR) effect, which is evi dence for spin transport through a single semiconductor QD. The TMR ratio and the curve shapes are varied by changing the gate voltage.
The response of a single InGaAs quantum dot, embedded in a miniaturized charge-tunable device, to an applied GHz bandwidth electrical pulse is investigated via its optical response. Quantum dot response times of 1.0 pm 0.1 ns are characterized via se veral different measurement techniques, demonstrating GHz bandwidth electrical control. Furthermore a novel optical detection technique based on resonant electron-hole pair generation in the hybridization region is used to map fully the voltage pulse experienced by the quantum dot, showing in this case a simple exponential rise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا