ترغب بنشر مسار تعليمي؟ اضغط هنا

Inertial and gravitational mass in quantum mechanics

130   0   0.0 ( 0 )
 نشر من قبل N. L. Harshman
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that in complete agreement with classical mechanics, the dynamics of any quantum mechanical wave packet in a linear gravitational potential involves the gravitational and the inertial mass only as their ratio. In contrast, the spatial modulation of the corresponding energy wave function is determined by the third root of the product of the two masses. Moreover, the discrete energy spectrum of a particle constrained in its motion by a linear gravitational potential and an infinitely steep wall depends on the inertial as well as the gravitational mass with different fractional powers. This feature might open a new avenue in quantum tests of the universality of free fall.



قيم البحث

اقرأ أيضاً

In a recent paper (arXiv:1701.04298 [quant-ph]) Torov{s}, Gro{ss}ardt and Bassi claim that the potential necessary to support a composite particle in a gravitational field must necessarily cancel the relativistic coupling between internal and externa l degrees of freedom. As such a coupling is responsible for the gravitational redshift measured in numerous experiments, the above statement is clearly incorrect. We identify the simple mistake in the paper responsible for the incorrect claim.
In describing the motion of atoms and clusters, we face with choosing quantum mechanics or classical mechanics under different conditions. In principle, there exist two criteria for this choice, but they do contradict in some cases though they are in agreement for other cases. Actually, this problem is closely related with the effective centre-of-mass method, the underlying application of quantum mechanics. It is shown that quantum mechanics must be selected for particles motion when the de Broglie wave length of the mass centre is larger than the particle size, and in such case the effective centre-of-mass can be used in Quantum Mechanics. In order to test this conclusion, an easy-manufactured experiment is suggested.
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelarations. We show that the incorporation of rotational accelerations requires a class of emph{loop prolongations} of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-stablished framework for implementing symmetry transformations in quantum mechanics.
The experimental realization of successive non-demolition measurements on single microscopic systems brings up the question of ergodicity in Quantum Mechanics (QM). We investigate whether time averages over one realization of a single system are rela ted to QM averages over an ensemble of similarly prepared systems. We adopt a generalization of von Neumann model of measurement, coupling the system to $N$ probes --with a strength that is at our disposal-- and detecting the latter. The model parallels the procedure followed in experiments on Quantum Electrodynamic cavities. The modification of the probability of the observable eigenvalues due to the coupling to the probes can be computed analytically and the results compare qualitatively well with those obtained numerically by the experimental groups. We find that the problem is not ergodic, except in the case of an eigenstate of the observable being studied.
88 - Bradley A. Foreman 2016
This paper investigates the relationship between subsystems and time in a closed nonrelativistic system of interacting bosons and fermions. It is possible to write any state vector in such a system as an unentangled tensor product of subsystem vector s, and to do so in infinitely many ways. This requires the superposition of different numbers of particles, but the theory can describe in full the equivalence relation that leads to a particle-number superselection rule in conventionally defined subsystems. Time is defined as a functional of subsystem changes, thus eliminating the need for any reference to an external time variable. The dynamics of the unentangled subsystem decomposition is derived from a variational principle of dynamical stability, which requires the decomposition to change as little as possible in any given infinitesimal time interval, subject to the constraint that the state of the total system satisfy the Schroedinger equation. The resulting subsystem dynamics is deterministic. This determinism is regarded as a conceptual tool that observers can use to make inferences about the outside world, not as a law of nature. The experiences of each observer define some properties of that observers subsystem during an infinitesimal interval of time (i.e., the present moment); everything else must be inferred from this information. The overall structure of the theory has some features in common with quantum Bayesianism, the Everett interpretation, and dynamical reduction models, but it differs significantly from all of these. The theory of information described here is largely qualitative, as the most important equations have not yet been solved. The quantitative level of agreement between theory and experiment thus remains an open question.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا