ﻻ يوجد ملخص باللغة العربية
We show that in complete agreement with classical mechanics, the dynamics of any quantum mechanical wave packet in a linear gravitational potential involves the gravitational and the inertial mass only as their ratio. In contrast, the spatial modulation of the corresponding energy wave function is determined by the third root of the product of the two masses. Moreover, the discrete energy spectrum of a particle constrained in its motion by a linear gravitational potential and an infinitely steep wall depends on the inertial as well as the gravitational mass with different fractional powers. This feature might open a new avenue in quantum tests of the universality of free fall.
In a recent paper (arXiv:1701.04298 [quant-ph]) Torov{s}, Gro{ss}ardt and Bassi claim that the potential necessary to support a composite particle in a gravitational field must necessarily cancel the relativistic coupling between internal and externa
In describing the motion of atoms and clusters, we face with choosing quantum mechanics or classical mechanics under different conditions. In principle, there exist two criteria for this choice, but they do contradict in some cases though they are in
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the
The experimental realization of successive non-demolition measurements on single microscopic systems brings up the question of ergodicity in Quantum Mechanics (QM). We investigate whether time averages over one realization of a single system are rela
This paper investigates the relationship between subsystems and time in a closed nonrelativistic system of interacting bosons and fermions. It is possible to write any state vector in such a system as an unentangled tensor product of subsystem vector