ﻻ يوجد ملخص باللغة العربية
The experimental realization of successive non-demolition measurements on single microscopic systems brings up the question of ergodicity in Quantum Mechanics (QM). We investigate whether time averages over one realization of a single system are related to QM averages over an ensemble of similarly prepared systems. We adopt a generalization of von Neumann model of measurement, coupling the system to $N$ probes --with a strength that is at our disposal-- and detecting the latter. The model parallels the procedure followed in experiments on Quantum Electrodynamic cavities. The modification of the probability of the observable eigenvalues due to the coupling to the probes can be computed analytically and the results compare qualitatively well with those obtained numerically by the experimental groups. We find that the problem is not ergodic, except in the case of an eigenstate of the observable being studied.
We describe how to obtain information on a quantum-mechanical system by coupling it to a probe and detecting some property of the latter, using a model introduced by von Neumann, which describes the interaction of the system proper with the probe in
The analysis of the model quantum clocks proposed by Aharonov et al. [Phys. Rev. A 57 (1998) 4130 - quant-ph/9709031] requires considering evanescent components, previously ignored. We also clarify the meaning of the operational time of arrival distribution which had been investigated.
We study the use of methods based on the real symplectic groups $Sp(2n,mathcal{R})$ in the analysis of the Arthurs-Kelly model of proposed simultaneous measurements of position and momentum in quantum mechanics. Consistent with the fact that such mea
We point out that, if one accepts the validity of quantum mechanics, the Bell parameter for the polarization state of two photons can be measured in a simpler way than by the standard procedure [Clauser, Horne, Shimony, and Holt, Phys. Rev. Lett. 23,
Understanding the quantum measurement problem is closely associated with understanding wave function collapse. Motivated by Breuers claim that it is impossible for an observer to distinguish all states of a system in which it is contained, wave funct