ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Mechanics in non-inertial reference frames: time-dependent rotations and loop prolongations

219   0   0.0 ( 0 )
 نشر من قبل Sujeev Wickramasekara
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelarations. We show that the incorporation of rotational accelerations requires a class of emph{loop prolongations} of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-stablished framework for implementing symmetry transformations in quantum mechanics.



قيم البحث

اقرأ أيضاً

We show that the Wigner-Bargmann program of grounding non-relativistic quantum mechanics in the unitary projective representations of the Galilei group can be extended to include all non-inertial reference frames. The key concept is the emph{Galilean line group}, the group of transformations that ties together all accelerating reference frames, and its representations. These representations are constructed under the natural constraint that they reduce to the well-known unitary, projective representations of the Galilei group when the transformations are restricted to inertial reference frames. This constraint can be accommodated only for a class of representations with a sufficiently rich cocycle structure. Unlike the projective representations of the Galilei group, these cocycle representations of the Galilean line group do not correspond to central extensions of the group. Rather, they correspond to a class of non-associative extensions, known as emph{loop prolongations}, that are determined by three-cocycles. As an application, we show that the phase shifts due to the rotation of the earth that have been observed in neutron interferometry experiments and the rotational effects that lead to simulated magnetic fields in optical lattices can be rigorously derived from the representations of the loop prolongations of the Galilean line group.
In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of t he Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration can equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle.
167 - Timur F. Kamalov 2010
Physics of non-inertial reference frames is a generalizing of Newtons laws to any reference frames. The first, Law of Kinematic in non-inertial reference frames reads: the kinematic state of a body free of forces conserves and determinates a constant n-th order derivative with respect to time being equal in absolute value to an invariant of the observers reference frame. The second, Law of Dynamic extended Newtons second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Law in non-inertial reference frames reads: a force induces a change in the kinematic state of the body and is proportional to the rate of its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the (n+1)-th differential equation. The third, Law of Static in non-inertial reference frames reads: the sum of all forces acting a body at rest is equal to zero.
An atom attached to a micrometer-scale wire that is vibrating at a frequency of 100 MHz and with displacement amplitude 1 nm experiences an acceleration magnitude 10^9 ms^-2, approaching the surface gravity of a neutron star. As one application of su ch extreme non-inertial forces in a mesoscopic setting, we consider a model two-path atom interferometer with one path consisting of the 100 MHz vibrating wire atom guide. The vibrating wire guide serves as a non-inertial reference frame and induces an in principle measurable phase shift in the wave function of an atom traversing the wire frame. We furthermore consider the effect on the two-path atom wave interference when the vibrating wire is modeled as a quantum object, hence functioning as a quantum non-inertial reference frame. We outline a possible realization of the vibrating wire, atom interferometer using a superfluid helium quantum interference setup.
318 - Cesare Tronci 2018
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Ber ry curvature, while its left leg is shown to lead to more general realizations of the density operator which have recently appeared in quantum molecular dynamics. Finally, the paper shows how alternative representations of both the density matrix and the classical density are equivariant momentum maps generating new Clebsch representations for both quantum and classical dynamics. Uhlmanns density matrix and Koopman-von Neumann wavefunctions are shown to be special cases of this construction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا