ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic bound-state equations in three dimensions

250   0   0.0 ( 0 )
 نشر من قبل Daniel Phillips
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Firstly, a systematic procedure is derived for obtaining three-dimensional bound-state equations from four-dimensional ones. Unlike ``quasi-potential approaches this procedure does not involve the use of delta-function constraints on the relative four-momentum. In the absence of negative-energy states, the kernels of the three-dimensional equations derived by this technique may be represented as sums of time-ordered perturbation theory diagrams. Consequently, such equations have two major advantages over quasi-potential equations: they may easily be written down in any Lorentz frame, and they include the meson-retardation effects present in the original four-dimensional equation. Secondly, a simple four-dimensional equation with the correct one-body limit is obtained by a reorganization of the generalized ladder Bethe-Salpeter kernel. Thirdly, our approach to deriving three-dimensional equations is applied to this four-dimensional equation, thus yielding a retarded interaction for use in the three-dimensional bound-state equation of Wallace and Mandelzweig. The resulting three-dimensional equation has the correct one-body limit and may be systematically improved upon. The quality of the three-dimensional equation, and our general technique for deriving such equations, is then tested by calculating bound-state properties in a scalar field theory using six different bound-state equations. It is found that equations obtained using the method espoused here approximate the wave functions obtained from their parent four-dimensional equations significantly better than the corresponding quasi-potential equations do.



قيم البحث

اقرأ أيضاً

In this paper, we study the relativistic effects in a three-body bound state. For this purpose, the relativistic form of the Faddeev equations is solved in momentum space as a function of the Jacobi momentum vectors without using a partial wave decom position. The inputs for the three-dimensional Faddeev integral equation are the off-shell boost two-body $t-$matrices, which are calculated directly from the boost two-body interactions by solving the Lippmann-Schwinger equation. The matrix elements of the boost interactions are obtained from the nonrelativistic interactions by solving a nonlinear integral equation using an iterative scheme. The relativistic effects on three-body binding energy are calculated for the Malfliet-Tjon potential. Our calculations show that the relativistic effects lead to a roughly 2% reduction in the three-body binding energy. The contribution of different Faddeev components in the normalization of the relativistic three-body wave function is studied in detail. The accuracy of our numerical solutions is tested by calculation of the expectation value of the three-body mass operator, which shows an excellent agreement with the relativistic energy eigenvalue.
Recently a formalism for a direct treatment of the Faddeev equation for the three-nucleon bound state in three dimensions has been proposed. It relies on an operator representation of the Faddeev component in the momentum space and leads to a finite set of coupled equations for scalar functions which depend only on three variables. In this paper we provide further elements of this formalism and show the first numerical results for chiral NNLO nuclear forces.
We study the coupled $LambdaLambda nn-Xi^- pnn$ system to check whether the inclusion of channel coupling is able to bind the $LambdaLambda nn$ system. We use a separable potential three-body model of the coupled $LambdaLambda nn - Xi^- pnn$ system a s well as a variational four-body calculation with realistic interactions. Our results exclude the possibility of a $LambdaLambda nn$ bound state by a large margin. However, we have found a $Xi^- t$ quasibound state above the $LambdaLambda nn$ threshold.
The Faddeev equations for the three body bound state are solved directly as three dimensional integral equation without employing partial wave decomposition. The numerical stability of the algorithm is demonstrated. The three body binding energy is c alculated for Malfliet-Tjon type potentials and compared with results obtained from calculations based on partial wave decomposition. The full three body wave function is calculated as function of the vector Jacobi momenta. It is shown that it satisfies the Schrodinger equation with high accuracy. The properties of the full wave function are displayed and compared to the ones of the corresponding wave functions obtained as finite sum of partial wave components. The agreement between the two approaches is essentially perfect in all respects.
We consider a model of relativistic three-body scattering with a bound state in the two-body sub-channel. We show that the naive K-matrix type parametrization, here referred to as the B-matrix, has nonphysical singularities near the physical region. We show how to eliminate such singularities by using dispersion relations and also show how to reproduce unitarity relations by taking into account all relevant open channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا