ﻻ يوجد ملخص باللغة العربية
The design, optimisation and construction of an anti-coincidence veto detector to complement the ZEPLIN-III direct dark matter search instrument is described. One tonne of plastic scintillator is arranged into 52 bars individually read out by photomultipliers and coupled to a gadolinium-loaded passive polypropylene shield. Particular attention has been paid to radiological content. The overall aim has been to achieve a veto detector of low threshold and high efficiency without the creation of additional background in ZEPLIN-III, all at a reasonable cost. Extensive experimental measurements of the components have been made, including radioactivity levels and performance characteristics. These have been used to inform a complete end-to-end Monte Carlo simulation that has then been used to calculate the expected performance of the new instrument, both operating alone and as an anti-coincidence detector for ZEPLIN-III. The veto device will be capable of rejecting over 65% of coincident nuclear recoil events from neutron background in the energy range of interest in ZEPLIN-III. This will reduce the background in ZEPLIN-III from ~0.4 to ~0.14 events per year in the WIMP acceptance region, a significant factor in the event of a non-zero observation. Furthermore, in addition to providing valuable diagnostic capabilities, the veto is capable of tagging over 15% for gamma-ray rejection, all whilst contributing no significant additional background. In conjunction with the replacement of the internal ZEPLIN-III photomultiplier array, the new veto is expected to improve significantly the sensitivity of the ZEPLIN-III instrument to dark matter, allowing spin independent WIMP-nucleon cross sections below 1E-8 pb to be probed.
The ZEPLIN-III experiment is operating in its second phase at the Boulby Underground Laboratory in search of dark matter WIMPs. The major upgrades to the instrument over its first science run include lower background photomultiplier tubes and install
We present limits on the WIMP-nucleon cross section for inelastic dark matter derived from the 2008 run of ZEPLIN-III. Cuts, notably on scintillation pulse shape and scintillation-to-ionisation ratio, give a net exposure of 63 kg.days in the range 20
This paper describes the design, fabrication and testing of the Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT). The ACD is LAT first-level defense against the charged cosmic ray backgro
We present details of the technical design and manufacture of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase xenon detector which measures both the scintillation light and the ionisation charge generated in the liquid by interacting
A Cosmic Muon Veto (CMV) detector using extruded scintillators is being designed around the mini-Iron Calorimeter detector at the transit campus of the India-based Neutrino Observatory at Madurai for measuring its efficiency at shallow depth undergro