ﻻ يوجد ملخص باللغة العربية
A Cosmic Muon Veto (CMV) detector using extruded scintillators is being designed around the mini-Iron Calorimeter detector at the transit campus of the India-based Neutrino Observatory at Madurai for measuring its efficiency at shallow depth underground experiments. The scintillation signal is transmitted through a Wavelength Shifting (WLS) fibre and readout by Hamamatsu Silicon-Photomultipliers (SiPMs). A Light Emitting Diode (LED) system is included on the front-end readout for in-situ calibration of the gain of each SiPM. A characterization system was developed for the measurement of gain and choice of the overvoltage (Vov) of SiPMs using LED as well as a cosmic muon telescope. The Vov is obtained by studying the noise rate, the gain of the SiPM, and the muon detection efficiency. In case of any malfunction of the LED system during the operation, the SiPM can also be calibrated with the noise data as well as using radioactive sources. This paper describes the basic characteristics of the SiPM and the comparison of the calibration results using all three methods, as well as the Vov of the SiPMs and muon selection criteria for the veto detector.
Silicon Photomultipliers (SiPMs) are attractive candidates for light detectors for next generation liquid xenon double-beta decay experiments, like nEXO. In this paper we discuss the requirements that the SiPMs must satisfy in order to be suitable fo
The motivation for a cosmic muon veto (CMV) detector is to explore the possibility of locating the proposed large Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) at a shallow depth. An initial effort in that direction,
This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to i
AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be
The design, optimisation and construction of an anti-coincidence veto detector to complement the ZEPLIN-III direct dark matter search instrument is described. One tonne of plastic scintillator is arranged into 52 bars individually read out by photomu