ﻻ يوجد ملخص باللغة العربية
We present limits on the WIMP-nucleon cross section for inelastic dark matter derived from the 2008 run of ZEPLIN-III. Cuts, notably on scintillation pulse shape and scintillation-to-ionisation ratio, give a net exposure of 63 kg.days in the range 20-80keV nuclear recoil energy, in which 6 events are observed. Upper limits on signal rate are derived from the maximum empty patch in the data. Under standard halo assumptions a small region of parameter space consistent, at 99% CL, with causing the 1.17 ton.year DAMA modulation signal is allowed at 90% CL: it is in the mass range 45-60 GeV with a minimum CL of 88%, again derived from the maximum patch. This is the tightest constraint on that explanation of the DAMA result yet presented using a xenon target.
There has been an increasing interest on the concept of Inelastic Dark Matter (iDM) - motivated in part by some recent data. We describe the constraints on iDM from the results of the two phase dark matter detector ZEPLIN-II, which has demonstrated s
We present new experimental constraints on the WIMP-nucleon spin-dependent elastic cross-sections using data from the first science run of ZEPLIN-III, a two-phase xenon experiment searching for galactic dark matter WIMPs based at the Boulby mine. Ana
If dark matter has mass lower than around 1 GeV, it will not impart enough energy to cause detectable nuclear recoils in many direct-detection experiments. However, if dark matter is upscattered to high energy by collisions with cosmic rays, it may b
The ZEPLIN-III experiment in the Palmer Underground Laboratory at Boulby uses a 12kg two-phase xenon time projection chamber to search for the weakly interacting massive particles (WIMPs) that may account for the dark matter of our Galaxy. The detect
We present details of the technical design and manufacture of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase xenon detector which measures both the scintillation light and the ionisation charge generated in the liquid by interacting